
Decentralized Cooperative Planning for Automated Vehicles with
Hierarchical Monte Carlo Tree Search

Karl Kurzer∗1, Chenyang Zhou∗2 and J. Marius Zöllner1,2

Abstract— Today’s automated vehicles lack the ability to
cooperate implicitly with others. This work presents a Monte
Carlo Tree Search (MCTS) based approach for decentralized
cooperative planning using macro-actions for automated vehi-
cles in heterogeneous environments. Based on cooperative mod-
eling of other agents and Decoupled-UCT (a variant of MCTS),
the algorithm evaluates the state-action-values of each agent in
a cooperative and decentralized manner, explicitly modeling
the interdependence of actions between traffic participants.
Macro-actions allow for temporal extension over multiple time
steps and increase the effective search depth requiring fewer
iterations to plan over longer horizons. Without predefined
policies for macro-actions, the algorithm simultaneously learns
policies over and within macro-actions. The proposed method
is evaluated under several conflict scenarios, showing that
the algorithm can achieve effective cooperative planning with
learned macro-actions in heterogeneous environments.

I. INTRODUCTION

While the quality of automated driving is progressing at
a staggering pace, today’s automated vehicles lack a key
ingredient that heavily separates them from their human
counterparts — implicit cooperation. In contrast to the tra-
ditional egoistic maneuver planning methods for automated
vehicles, human drivers take other drivers’ subtle actions into
consideration enabling them to make cooperative decisions
even without explicit communication.

Thus, in recent years a variety of cooperative planning
approaches for vehicles have been proposed that take the
interdependence of ones own action and the actions of others
into account [1], [2]. This problem can be treated as a multi-
agent Markov Decision Process (MDP). When ignoring any
execution uncertainty, transitions from the current to the next
state are fully deterministic given the joint actions of all
players. Algorithms designed for single-agent systems often
suffer from the curse of dimensionality when applying them
to multi-agent systems, meaning that the number of possible
outcomes increases exponentially as the number of agents
grows, which is even more severe when planning for longer
time horizons.

Monte Carlo Tree Search (MCTS), a reinforcement learn-
ing method [3], has shown promising results on multiple
occasions facing problems of this kind. The most popular
example is the software AlphaGo, reaching super-human
performance in the game of Go ([4], [5]). MCTS repeatedly
samples a model to improve value estimates of actions at a

1Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe,
Germany {kurzer}@kit.edu 2FZI Research Center for Informa-
tion Technology, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
{czhou, zoellner}@fzi.de — *These authors contributed
equally.

Selection Expansion Simulation Backpropagation

Fig. 1: Phases of Monte Carlo Tree Search for an overtaking maneuver; the
selection phase descends the tree by selecting promising children until a
node is encountered that has not yet been fully expanded. Upon expansion
random actions are simulated until the planning horizon is reached. The
result is backpropagated through all nodes along the chosen path. Eventually
the algorithm converges to an optimal action sequence.

given state backpropagating the results from the simulation.
The results guide the selection and expansion phases towards
more promising areas of the search space. An example for
the domain of automated driving is given in Fig. 1. A
thorough overview of MCTS and its extensions is presented
in [6]. Since the performance of MCTS is dominated by its
effective search depth [7], and multi-agent problems have
an inherently large branching factor, temporal abstraction
is used in this work by extending actions over several
time steps, hereafter macro-actions (MAs). MAs address the
curse of dimensionality by generally reducing the problem
complexity, leading to quicker convergence [8].

DeCoH-MCTS generates decentralized cooperative
hierachical plans and applies it to the domain of automated
driving. First, we address the problem of decentralized
simultaneous decision making with Decoupled-UCT (a
variant of MCTS [9]), removing dependencies on the
decisions of others. Additionally, to achieve longer planning
horizons we integrate temporally extended macro-actions
(MAs) in Decoupled-UCT. These MAs are designed in a
flexible way that requires only initial and terminal conditions
to be defined, allowing the algorithm to simultaneously
learn which MA to choose and how to execute it. Last we
evaluate the capabilities of DeCoH-MCTS in simulation,
showing that it can achieve effective cooperative planning
with learned macro-actions in heterogeneous environments.
In addition the comparison with flat MCTS indicates that
our algorithm can generate feasible plans in complex traffic
scenarios with fewer iterations but higher quality.

The remainder of this paper is structured as follows:
Section II gives a brief overview of research on cooperative
automated driving, as well as hierarchical reinforcement

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
2018 IEEE Intelligent Vehicles Symposium (IV)

ar
X

iv
:1

80
7.

09
53

0v
1

 [
cs

.A
I]

 2
5

Ju
l 2

01
8

learning. The problem is formally defined and its terminol-
ogy is introduced in section III. Adaptations to flat MCTS
are presented in section IV and the resulting DeCoH-MCTS
algorithm is described in detail in Section V. Lastly, DeCoH-
MCTS is evaluated in a variety of scenarios.

II. RELATED WORK

A. Cooperative Driving

Instead of assuming traffic participants follow merely
their own agenda, cooperative planning considers others’
anticipations and reactions to the ego vehicle’s behavior and
chooses actions that are cooperative, increasing the total
utility ([10], [11]). The first successful demonstration of
cooperative automated vehicles emerged from the California
PATH program [12] in the 1990s, where the notion of string
stability was introduced to maintain the stability of a group
of automated vehicles. Later, other projects focusing on the
potential of cooperative perception and motion planning as
well as the required software and hardware structures were
conducted [13].

A definition of cooperative driving behavior, its necessary
preconditions and an algorithm to generate cooperative plans
is presented in ([11], [14]). Using a utility focused approach
cooperative behavior is achieved by increasing the overall
utility consisting of the sum of each agent’s own utility. As-
suming that utilities of all agents can be perfectly estimated,
the presented algorithm finds the combination of actions with
maximum utility through an exhaustive search. Actions of
agents are represented by quintic polynomials optimized for
safety, energy, time, and comfort [15].

The potential of MCTS for cooperative driving is first
presented in [16]. Based on Information-Set MCTS presented
in ([17], [18]) they ensure decoupled decision making and
conduct decentralized planning. Similar to ([11], [14]) they
define a set of high-level actions resembled by primitive
actions with duration of one second. The algorithm is demon-
strated in three different merge scenarios, with up to three
vehicles directly interacting with the ego vehicle, while other
vehicles are merely guided by an Intelligent Driver Model
[16]. Additionally, the number of lane changes within the
planning horizon is restricted to one.

B. Hierarchical Reinforcement Learning

To address the problem of combinatorial explosion when
planning for longer horizons, temporally extendable actions
have been long studied in the domain of reinforcement
learning. Sutton et al. [19] provided a comprehensive frame-
work incorporating temporal abstraction into reinforcement
learning. While they pointed out that there will be a loss of
optimality due to the fixed internal structure of the options,
they presented intra-option learning methods ([19], [20]) to
achieve more flexible options.

Another framework for hierarchical reinforcement learning
was presented in [21], where the entire task is decomposed
hierarchically and then solved by dealing with multiple
smaller tasks. Policies of all elements in the hierarchy can be
learned simultaneously. The state-action-value function can

be recursively decomposed into combinations of the state-
action-value of primitive actions. This algorithm is proved
to converge to the recursive optimality.

The combination of MCTS and macro-actions can be
done in two ways. Either pre-defined/offline learned MAs
represent the action space of the MCTS or online MA-
learning is conducted within the search process. A trivial
definition of MAs is the repetition of actions, which delivered
good results, but cannot be generalized ([22], [23]). [24]
creates more complex MAs including domain knowledge
and additional algorithms for the execution of MAs. MAs
can be also learned offline by a DQN [25]. The resulting
MAs are more flexible to an extent than the traditional pre-
defined MAs, but are still limited. Additional Monte Carlo
based planning methods using MAs are presented in ([26],
[27]), which adopt the MAX-Q framework and propose a
hierarchical MCTS algorithm, where each MA is learned by
a nested MCTS in the larger search tree.

III. PROBLEM STATEMENT

We formulate the problem of cooperative planning with
MAs as a decentralized Semi-Markov Decision Process
(Dec-SMDP). At each time step, all agents choose an ac-
tion simultaneously without knowledge of future actions of
others, receive an immediate reward and transfer the system
to the consecutive state. The reward and the state transition
is dependent on all agents’ actions.

Formally, a Dec-SMDP is described by a tuple
〈Υ,S,A, T,R, γ〉, where
• Υ is the finite set of agents indexed by i ∈ 1, 2, . . . n.
• Si is the finite state space of an agent, S = ×Si

represents the joint state space of Υ.
• Ai is the finite action space of an agent, A = ×Ai

represents the joint action space of Υ.
• T : S × A × S → [0, 1] is the transition function
P (s′|s,a) which specifies the probability of the tran-
sition from state s to state s′ under the joint action a
defined by each agent’s choice.

• R : S × A × S → R is the reward function with
r(s, s′,a) representing the reward after the joint action
a is executed.

• γ ∈ [0, 1] is a discount factor which controls the
influence of future rewards on the current state.

We use superscript i to denote that a parameter is related
to agent i. The solution to the Dec-SMDP is the joint policy
Π = 〈π1, . . . , πn〉, where πi denotes the individual policy
for a single agent, i.e., a mapping from the state to the
probabilities of each available action, πi : Si ×Ai → [0, 1].
Each agent tries to maximize its expected cumulative reward
starting from its current state: G =

∑
γtr(s, s′, a), where t

is the time and G is the return, representing the cumulated
discounted reward. V (s) is called the state-value function,
given by V π(s) = E[G|s, π]. Similarly, the state-action-
value function Q(s, a) is defined as Qπ(s, a) = E[G|s, a],
representing the expected return when choosing action a in
state s.

The optimal policy starting at state s is defined as π∗ =
arg maxπ V

π(s). The state-value function is optimal under
the optimal policy: maxV = V π

∗
, the same is true for

the state-action-value function: maxQ = Qπ
∗
. The optimal

policy can be found by maximizing over Q∗(s, a):

π∗(a|s) =

{
1 if a = arg maxa∈AQ

∗(s, a)
0 otherwise (1)

It should be mentioned that Q∗ is stored in a table, i.e., each
discrete action is assigned with its state-action-value Q(s, a).
Once Q∗ has been determined, the optimal policies can easily
be derived. Thus the goal is transformed to learning the
optimal state-action-value function Q∗(s, a) for each state-
action combination (macro/primitive).

Compared to the single level of policies in an MDP, there
exists a hierarchy of policies in an SMDP where each MA
ω has its own policy πω and a policy πµ which decides how
to choose the next MA ω′ when the previous one terminates.
The Bellman equations of the SMDP can be written as:

Qπµ(s, ω) =

τ∑
k=1

γk−1rt+k

+
∑
s′,τ

γτp(s′, τ |s, ω)
∑
ω′

πµ(ω′|s′)Qπµ(s′, ω′)

(2)

The first part is the cumulated reward for this MA ω during
its execution for τ steps. The latter part is the completion
term C which can be further decomposed until primitive
actions are encountered [21]. Thus the state-action-value of
choosing MA ω, Qµ(s, ω) can be viewed as the cumulative
discounted reward by following the policy of the chosen MA
πω and then the policy πµ which chooses this MA until πµ
ends.

IV. APPROACH

A. Hierarchical Action Graph

This section presents our design of macro-actions with a
hierarchical graph for the cooperative driving domain, based
on the Option [19] and MAXQ [21] frameworks.

While MAs reduce the complexity and thus the search
space, the following are key challenges that must be ad-
dressed when implementing MAs.

1) Asynchronous decision making: In a multi-agent sys-
tem with variable duration of MAs, MAs end asyn-
chronously. Different strategies are presented in [28].
• tall keeps some agents idle to wait for others finishing

their MAs
• tany simply interrupts all MAs when the first agent

finishes its MA
• tcontinue allows asynchronous selection of MAs, which

means that each agent independently decides its next
macro-action once it terminates its current MA.

Clearly, the first two schemes tall and tany force a syn-
chronization of the decision epochs and can only be realized
in a centralized way, while tcontinue allows decentralized
asynchronous decision making.

to desired
velocity

make room merge in overtake

root

πmr πmi πotπdv

πµ

+ 0 L R-

Fig. 2: The hierarchical action graph originates from an abstract root macro-
action µ with a policy πµ that selects other abstract macro-actions ω. These
MAs have different action sets that are defined by primitive actions, that
the agent can execute.

2) Flexible design of MAs: Naive pre-defined MAs are
even more harmful than only planning with primitive actions
[19]. To mitigate the risk, the policy inside a MA should be
learned online, allowing for a flexible adaptation to a given
situation.

3) Cooperation Level: Learning of MAs can be distracted
by lower level actions of other agents in a multi-agent system
[29]. Consequently, approaches such as localized macro-
actions that do not consider cooperation at the level of prim-
itive actions are developed in ([30], [31], [32]). However,
they are unsuitable for cooperative automated driving, where
consideration of primitive actions of all agents is required,
e.g., for collision checking.

The Option framework [19] generalizes the primitive ac-
tions into temporally extended MAs with three components
〈I, π, β〉, where the MA is referred to as the option. I is the
initiation set which specifies if this MA is available at the
current state. π : S × A → [0, 1] is the above mentioned
policy for this MA. β : S → [0, 1] is the termination
probability that the MA terminates at the current state. Note
that for primitive actions these three components are defined
as π(s, a) = 1, β(s) = 1 and I = S.

The MAXQ framework [21] formulates the whole scenario
as a root task and decomposes the root task into sub-
tasks. To solve the root task, sub-tasks are sequentially
chosen according to the root policy πµ and the sub-tasks are
solved according to their own policies πω . The sub-tasks can
be further decomposed into sub-sub-tasks until a primitive
task (action) is encountered, the policies are decomposed
accordingly.

We adopt the hierarchical action graph from the MAXQ
framework and present our hierarchical action graph in
Fig. 2. Considering the listed conflict scenarios that require
cooperative driving in [33], we propose four MAs: overtake,
merge in, make room, to desired velocity. Each MA has four
components 〈I, π,Aω, β〉, where Aω is the set of available
actions at the immediate lower level. The primitive actions
are defined as acceleration, deceleration, do-nothing, lane
change left and lane change right. They are represented by
quintic polynomials describing the changes in longitudinal
velocity ∆ẋ and lateral position ∆y ([11], [15]), depicted

lane change left

lane change right

acceleratedo nothingdecelerate

∆y

x

y

Fig. 3: Trajectories of the five primitive actions

TABLE I: Initial and Terminal Conditions for Macro-Actions

Macro-
Action

Initial Condition Terminal Condition

overtake behind slower vehicle
and left lane exists

ahead of slower vehicle

merge in not in desired lane in desired lane
make room always possible always possible
to desired
velocity

not at desired velocity at desired velocity

in Fig. 3. The position of a vehicle refers to the lateral
and longitudinal position of the midpoint of the rear axle
in the world coordinate. Each MA has a subset of these
primitive actions and is referred to as the parent action of the
primitive actions. The solution to the general driving task is
generalized as the root MA µ that entails all lower MAs.
The initiation set I (or initial condition) and termination
probability β (or termination condition) of all macro-actions
are defined in Table I.

As defined by (2), the value of choosing action a at state
s according to policy π is the cumulative discounted reward
starting from the current state until π ends. An example for
one iteration in the single agent domain with hierarchically
bounded return is depicted in Fig. 4.

B. Decision Making without Communication

Since agents are not communicating, decentralized plan-
ning needs to be conducted, where each agent can only
influence its own action, rather than the joint action of all
agents. The state-action-value estimation of agent i, Q(s, ai),
cannot distinguish among all joint actions a containing this
agent’s action. Based on the idea from simultaneous games
[9] and distributed reinforcement learning area [34], we
conduct the marginalization over these joint actions, see (3):

Q(s, ai) =
1

N(s, ai)

∑
a

1(ai)N(s,a)Q(s,a), (3)

where N(s, ai) and N(s,a) represent visit count of agent
i’s action a and the joint action a respectively.

C. Cooperative Reward Function

As opposed to classical multi-agent systems with an
explicit common goal and an immediate reward for the
joint action, the common goal for cooperative driving is
rather implicitly stated — solving a scenario with conflicting
interests maximizing the overall reward, given each vehicle’s
safety, efficiency and comfort preferences. Similar to ([11],
[16]) DeCoH-MCTS assumes identical reward functions for
all agents. For each agent i a cooperative reward ricoop is

overtakeg
πµ
ot = γ0r1 + γ1r2 + γ2r3 + γ3r4

lane change leftr1gπotlane change left = γ0r1 + γ1r2 + γ2r3

accelerater2gπotaccelerate = γ0r2 + γ1r3

lane change rightr3gπotlane change right = r3

to desired velocityg
πµ
dv = r4

accelerater4g
πdv
accelerate = r4

root

Fig. 4: Hierarchically bounded return for the example of a single agent; the
returns of this iteration are defined on the left side. Note that the return
for choosing MA overtake under the root policy πµ includes all rewards
from r1 to r4, since πµ terminates at t = 4, while the return for choosing
lane change left under policy πot only includes the reward from r1 to r3
because the MA overtake terminates at t = 3. This means that the return
of an action a is bounded within its parent MA ω.

calculated, which is the sum of its own reward ri according
to (4) as well as the rewards of all other agents based on (5).

ri = riφ + riaction

= riφ + risafety + riefficiency + ricomfort
(4)

ricoop = ri + λ

n∑
j=0,j 6=i

rj (5)

riφ is the shaping term described in the next section.
λi ∈ [0, 1] is a cooperation factor that determines the agent’s
willingness to cooperate with other agents (from λi = 0
egoistic, to λi = 1 fully cooperative). With the goal to
generate cooperative maneuver decisions λi should be larger
than 0.

D. Reward Shaping

Potential based reward shaping is used to accelerate the
convergence of the learning process, while being optimality
invariant [35]. A potential function φ(s) is defined to deter-
mine the potential of each state. The closer the current state
to the desired state is, the higher the potential will be. Our
work describes a desire that an agent strives to fulfill as a
certain velocity and lane index to be reached. In an MDP,
the potential based reward for a transition from state s to s’
by action a is written as:

rφ(s, s′, a) = γφ(s′)− φ(s) (6)

Thus, the ego reward function for each agent can be written
as:

ri = riaction + γφ(s′)− φ(s) (7)

The potential shaping term can be generalized in the
SMDP with an additional parameter τ denoting the duration
of the MA, defined as:

rφ(s, st+τ , ω) = γτφ(st+τ)− φ(st) (8)

It can be proved that (8) is equivalent to the discounted sum
of the shaped terms for each primitive action within its MA
ω:

γτφ(st+τ)− φ(st) =

τ∑
k=1

γk−1rφ(s, st+τ , ω)at+k (9)

V. ALGORITHM

We call our algorithm DeCoH-MCTS, its most important
functions are outlined in Algorithm 1. It preserves the clas-
sical four steps of MCTS: selection, expansion, simulation
and backpropagation. The function TREEPOLICY contains
the selection and expansion steps. Like traditional MCTS
the algorithm builds a search tree of possible future states,
starting from the root node µ representing the initial state.

1) Tree Policy: UCT with a single agent expands nodes
until all available actions have been tried and then continues
to grow the tree deeper. In the decentralized multi-agent sys-
tem, the agent cannot distinguish between the joint actions.
As a result, the tree can grow deeper once each agent has
explored all of its available actions once. As [36] suggests
that the deterministic UCT in multi-player games does not
necessarily converge to a Nash equilibrium, ε-Greedy is
introduced and each agent selects an action with stochastic
UCT as follows:

πε(a|s) =

{
1− ε+ ε

|A| if a = arg maxa∈A UCT (a)
ε
|A| otherwise

(10)
Since only primitive actions receive immediate rewards

and can trigger system transitions, a joint action a is required
to contain only primitive actions (not MAs) to be executed
and transfer the system to a consecutive state. This implies
that all agents select according to their hierarchical policies
until a primitive action is chosen. Our approach adopts
the tcontinue termination mechanism to deal with MAs of
variable duration, i.e., the decision making for the next
MA is independent of the others’ current MAs and thus
asynchronous for all agents.

2) Simulation Policy: As no prior knowledge is used, the
simulation policy simply chooses MAs and their respective
primitive actions at random.

3) Backpropagation Policy: Basic MCTS usually uses the
simulation outcome without any intermediate rewards for
actions in the backpropagation step [6]. By contrast, the
return, i.e., cumulative discounted reward is used in our
approach. As mentioned before, the return for the current
action is bounded within its parent action. Both ([26], [27])
use the recursive form of MCTS based on the POMCP [37]
to realizes the hierarchically bounded return, which is only
applicable in the single-agent system and the multi-agent
system with tany or tall termination rule. To combine the
hierarchically bounded return with tcontinue in a multi-agent
system, the rewards along each iteration are stored in a
table together with the corresponding hierarchical informa-
tion about the action, indicated by R. We then conduct a
hierarchical boundary check based on this reward sequence,
determining with which MA the reward is associated.

Algorithm 1 DeCoH-MCTS

function PLANNING(Υ,A, s)
a← ∅
while driving do

new root node nµ ← n〈a,Υ,A, s〉
a← DeCoH-MCTS(nµ)
s← ExecuteAction(a)

end while
return

end function

function DECOH-MCTS(nµ)
while computational budget not reached do
〈nleaf ,R〉 ←TreePolicy(nµ)
R ← SimulationPolicy(nleaf ,R)
BackpropagationPolicy(nleaf ,R)

end while
return a←FinalSelection(nµ)

end function

function TREEPOLICY(n)
repeat

for i = 1 to |Υ| do
ai ← UCTAction(n, i)
a← [a, ai]

end for
n←SelectNode(n,a)
R ←CollectReward(n,a)

until n == ∅
〈nleaf ,R〉 ← ExpandNode(n,a)
return nleaf ,R

end function

function SIMULATIONPOLICY(n)
for i = 1 to |Υ| do

action ai ← RandomSelection(n, i)
a← [a, ai]

end for
R ←CollectReward(n,a)
return R

end function

function BACKPROPAGATIONPOLICY(n,R)
while n 6= nµ do

N(n)← N(n) + 1
for i = 1 to |Υ| do

N(ai)← N(ai) + 1

Gi ←∑aip γtri

Q(ai)← Q(ai) + Gi−Q(ai)
N(ai)

end for
n← nparent

end while
end function

TABLE II: Configuration for the Overtake Scenario

ID color x0 v0 l0 vdes ldes
0 blue 5 m 15 m/s 0 25 m/s 0
1 red 25 m 15 m/s 0 20 m/s 0
2 green 45 m 15 m/s 0 15 m/s 0

Fig. 5: Scenario: Overtake

4) Final Selection and Execution: When the termination
conditions are met, the agent has learned a policy hierarchy
and chooses an action according to the max reward or max
visits principle. It should be mentioned that the selected
primitive action belongs to a certain macro-action. When
starting a new search, this information can be incorporated in
the new tree or discarded, which is called hierarchical control
mode and polling control mode respectively. [19] showed
that polling which starts a new planning cycle without any
memory about the previous step yields better results because
polling allows the premature termination of macro-actions at
each step and is thus more flexible.

VI. EVALUATION

The evaluation is conducted using a simulation. We use
three different scenarios to test if our algorithm can meet the
following goals:
• Learning of MAs
• Converging quicker than flat MCTS
• Finding robust solutions when encountering non-

cooperative drivers
Each scenario is defined by initial variable values indexed

with 0, and desired values indexed by des denoting the agents
desire. x denotes the position, v the velocity and l the lane
index respectively. A video of the algorithm in execution can
be found online 1.

A. Learning of Macro-Actions

The overtake scenario in Fig. 5 is considered to test the
algorithm’s ability to simultaneously learn which MA to
choose and how to execute it. Table II defines the settings
for the scenario. All three vehicles are controlled by their
own DeCoH-MCTS with λi = 1. The step length is set to
2 s, a total of 2,000 iterations are executed with a maximum
planing horizon of 20 steps. The resulting plan found at
step 0 with the given scenario configuration is depicted in
Table III

It can be seen that agent 0 learns the MA overtake
differently from agent 1, where agent 0 makes two lane
changes to the left, accelerates to get in front of the other two
vehicles and finally returns back to its desired lane. Agent 2
shows cooperative behavior by making room for others as it
is being tailgated.

1http://url.fzi.de/DeCoH-MCTS-IV

TABLE III: Plan Result at Step 0

Agent Planned Action Sequences

0 Overtake
L L + + 0 0 R R

1 Overtake
L + + 0 R 0 0 0

2 Make Room
+ 0 - 0 0 - + 0

50 100 150 200 250 300 350

x [m]

0

2

4

6

8

10

y
[m

]

vehicle movement x-y-t

agent: 0

agent: 1

agent: 2

0

2

4

6

8

10

12

14

16

ti
m

e
[s

]

Fig. 6: Trajectories for each agent of the overtake scenario; The color
represents the time according to the color bar on the right side. It can
be seen that agent 1 changes to the left after driving in front of agent 2,
while agent 0 stays in lane 2 until it gets in front of both two vehicles and
then makes two lane changes to its desired lane 0.

In the polling control mode, each agent executes the
planned action, i.e., L, L, + respectively, and then starts a new
plan without memorizing the previous result. Fig. 6 shows
the 2D trajectories for each agent.

B. Convergence

A test of the convergence speeds between DeCoH-MCTS
and flat MCTS is conducted using the double merge scenario
in Fig. 7. There are two vehicles on a three-lane road with
another four parked vehicles blocking the rightmost and
leftmost lane. Both vehicle 0 (blue) and vehicle 1 (red) start
with a speed of 25 m/s and want to keep their current lane
and velocity.

We equip the macro-action overtake in one test with
domain knowledge and implement it similar to the ε-greedy
policy during the simulation. The algorithm runs in polling
control mode with a step length of 2 seconds. The undis-
counted cumulated rewards ricoopof vehicle 0 w.r.t. different
numbers of iterations and maximal tree depths are calculated
and compared, see Fig. 8. Each data point is the mean value
of 30 runs with an error bar consisting of upper and lower
quartiles.

It can be seen that flat MCTS performs better in terms
of undiscounted return for a low number of iterations, but
DeCoH-MCTS clearly converges to a higher optimum as the
number of iterations increases (>100). Considering that the

Fig. 7: Scenario: Double Merge

101 102 103 104

Iterations

−2000

−1500

−1000

−500

0

U
n

d
is

co
u

nt
ed

C
u

m
u

la
ti

ve
R

ew
ar

d

Flat MCTS
Scene: DoubleMerge, Criterion: Undiscounted Cumulative Reward

max. depth = 5

max. depth = 7

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(a) Undiscounted return of flat MCTS

101 102 103 104

Iterations

−2000

−1500

−1000

−500

0

U
n

d
is

co
u

nt
ed

C
u

m
u

la
ti

ve
R

ew
ar

d

DeCoH-MCTS WITHOUT Prior Knowledge
Scene: DoubleMerge, Criterion: Undiscounted Cumulative Reward

max. depth = 5

max. depth = 7

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(b) Undiscounted return of DeCoH-MCTS without domain knowledge

101 102 103 104

Iterations

−2000

−1500

−1000

−500

0

U
n

d
is

co
u

nt
ed

C
u

m
u

la
ti

ve
R

ew
ar

d

DeCoH-MCTS WITH Prior Knowledge
Scene: DoubleMerge, Criterion: Undiscounted Cumulative Reward

max. depth = 5

max. depth = 7

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(c) Undiscounted return of DeCoH-MCTS with domain knowledge

Fig. 8: Performance comparison of different MCTS versions in the double
merge scenario

number of iterations lies usually around 1000, the DeCoH-
MCTS performs better than flat MCTS. It is observed that
an increase in the maximal search depth leads to poorer
performance for the classical MCTS as opposed to DeCoH-
MCTS. The reason is that classical MCTS does not have
any domain specific knowledge and conducts the simulation
totally random. Larger maximum search depth means that
the random simulations are more likely to end in collisions.
As a result, almost all actions are evaluated negatively. It
becomes difficult for the agent to choose actions that fulfill
its desire while not leading to a colliding state, so that the
agent eventually chooses to decelerate to a standstill, being
the safest option.

In addition, the comparison between DeCoH-MCTS with
and without domain knowledge shows that the integration of
domain knowledge can accelerate the learning speed while
it does not affect the optimality of the solution.

C. Robustness when encountering non-cooperative drivers

The bottleneck scenario is used to demonstrate the ro-
bustness in situations where other agents do not behave as
the algorithm assumes (see IV-C). As Fig. 9 and Table IV

TABLE IV: Configuration for the Bottleneck Scenario

ID color x0 v0 l0 vdes ldes
0 blue 5 m 10 m/s 0 15 m/s 0
1 red 195 m 5-17m/s 0 5-17m/s 1
2 green 100 m 0 m/s 0 0 m/s 0

Fig. 9: Scenario: Bottleneck, where the green vehicle blocks one lane

show, vehicle 0 (blue) approaches from the left and is
controlled by DeCoH-MCTS, vehicle 1 (red) drives from
the right at different constant velocities in the range of
v ∈ [5 m/s, 17 m/s]. Vehicle 1 keeps its velocity and does
not react to vehicle 0 at all. Vehicle 2 (green) blocks the lane
of vehicle 0.

Fig. 10 depicts the trajectories of the three vehicles for
different velocities for vehicle 1. When vehicle 1 drives at
lower speeds, vehicle 0 chooses to drive faster to pass the
bottleneck first. When vehicle 1 drives at higher speeds,
vehicle 0 changes its plan according to the current situa-
tion and lets the oncoming vehicle pass before passing the
obstacle. It shows that our algorithm is able to generate
robust solutions even in heterogeneous environments. While
the algorithm models others decisions as presented by IV-C,
it replans according to current situation in every steps in the
polling control mode. Thus when another vehicle does not
behave as assumed, DeCoH-MCTS will find a feasible plan
accordingly.

VII. CONCLUSIONS

In this paper, we proposed a decentralized planning
method of MAs based on MCTS to generate cooperative
maneuvers with longer time horizons. The hierarchical re-
inforcement learning framework MAXQ is integrated into

x [m
]

950

1000

1050

1100y [m
]

0
1

2
3

4
5

6

t [se
c]

0.0

5.0

10.0

15.0

20.0

(a) vred = 5 m/s

x [m
]

950

1000

1050

1100

y [m]
0

1
2

3
4

5
6

t [se
c]

0.0

5.0

10.0

15.0

(b) vred = 9 m/s

x [m
]

900
950

1000
1050

y [m] 0123456

t [se
c]

0

4

8

12

16

(c) vred = 13 m/s

x [m
]

850
900

950
1000

1050

y [m] 0
1

2
3

4
5

6

t [se
c]

0

4

8

12

(d) vred = 17 m/s

Fig. 10: Different behavior for varying levels of cooperation

MCTS and then extended to the multi-agent system with the
help of Decoupled-UCT. By only specifying the initial and
terminal conditions of MAs, the execution of MAs and the
choice over MAs are learned simultaneously. The tests under
several conflict scenarios show that our algorithm is able
to handle a variety of conflict scenarios and demonstrates
potential over traditional MCTS.

Future work will focus on state abstraction, which will
allow to share knowledge of macro-actions between different
depths in the tree as well as enable the recycling of the
search tree, requiring even fewer iterations as possible future
states have already been evaluated in previous plans. Another
aspect will be the integration of a learned prior distribution
over actions as well as macro actions.

VIII. ACKNOWLEDGEMENTS

We wish to thank the German Research Foundation (DFG)
for funding the project Cooperatively Interacting Automo-
biles (CoInCar) within which the research leading to this con-
tribution was conducted. The information as well as views
presented in this publication are solely the ones expressed
by the authors.

REFERENCES

[1] M. Bahram, A. Lawitzky, et al., “A Game-Theoretic Approach to
Replanning-Aware Interactive Scene Prediction and Planning,” IEEE
Transactions on Vehicular Technology, 2016.

[2] R. Elvik, “A review of game-theoretic models of road user behaviour,”
Accident Analysis and Prevention, 2014.

[3] T. Vodopivec and B. Ster, “On Monte Carlo Tree Search and Re-
inforcement Learning Spyridon Samothrakis,” Journal of Artificial
Intelligence Research, 2017.

[4] D. Silver, A. Huang, et al., “Mastering the game of Go with deep
neural networks and tree search,” Nature, 2016.

[5] D. Silver, J. Schrittwieser, et al., “Mastering the game of Go without
human knowledge,” Nature, 2017.

[6] C. B. Browne, E. Powley, et al., “A survey of Monte Carlo tree search
methods,” IEEE Transactions on Computational Intelligence and AI
in Games, 2012.

[7] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large Markov decision processes,” in
IJCAI International Joint Conference on Artificial Intelligence, 1999.

[8] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems, 2003.

[9] M. J. Tak, M. Lanctot, and M. H. Winands, “Monte Carlo Tree
Search variants for simultaneous move games,” in IEEE Conference
on Computatonal Intelligence and Games, CIG, 2014.

[10] R. Axelrod and W. D. Hamilton, “The Evolution of Cooperation,”
Science, 1981.

[11] M. Düring and P. Pascheka, “Cooperative decentralized decision
making for conflict resolution among autonomous agents,” IEEE
International Symposium on Innovations in Intelligent Systems and
Applications, 2014.

[12] D. Swaroop and J. K. Hedrick, “String stability of interconnected
systems,” IEEE Transactions on Automatic Control, 1996.

[13] C. Stiller, G. Farber, and S. Kammel, “Cooperative cognitive automo-
biles,” IEEE, Intelligent Vehicles Symposium, 2007.

[14] P. Pascheka and M. During, “Advanced cooperative decentralized deci-
sion making using a cooperative reward system,” in IEEE International
Symposium on Innovations in Intelligent Systems and Applications,
2015.

[15] A. Takahashi, T. Hongo, Y. Ninomiya, and G. Sugimoto, “Local path
planning and motion control for agv in positioning,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept 1989.

[16] D. Lenz, T. Kessler, et al., “Tactical cooperative planning for au-
tonomous highway driving using Monte-Carlo Tree Search,” in IEEE
Intelligent Vehicles Symposium, 2016.

[17] Cowling, Peter I., E. J. Powley, and D. Whitehouse, “Information
set monte carlo tree search,” IEEE Transactions on Computational
Intelligence and AI in Games, 2012.

[18] D. Soemers, “Tactical Planning Using MCTS in the Game of Star-
Craft,” Ph.D. dissertation, Maastricht University, 2014.

[19] R. S. Sutton, D. Precup, et al., “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, 1999.

[20] R. S. Sutton, D. Precup, and S. P. Singh, “Intra-option learning about
temporally abstract actions,” in ICML, 1998.

[21] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” Journal of Artificial Intelligence Re-
search, 2000.

[22] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Monte Carlo
Tree Search with macro-actions and heuristic route planning for
the Physical Travelling Salesman Problem,” in IEEE Conference on
Computational Intelligence and Games, 2012.

[23] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samoth-
rakis, P. I. Cowling, and S. M. Lucas, “Solving the physical traveling
salesman problem: Tree search and macro actions,” IEEE Transactions
on Computational Intelligence and AI in Games, 2014.

[24] M. de Waard, D. M. Roijers, and S. C. Bakkes, “Monte carlo
tree search with options for general video game playing,” in IEEE
Conference on Computational Intelligence and Games, 2016.

[25] C. Paxton, V. Raman, et al., “Combining Neural Networks and Tree
Search for Task and Motion Planning in Challenging Environments,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2017.

[26] M. Toussaint, “Hierarchical Monte-Carlo Planning,” in AAAI Confer-
ence on Artificial Intelligence, 2015.

[27] A. Bai, S. Srivastava, and S. Russell, “Markovian state and action
abstractions for MDPs via hierarchical MCTS,” in IJCAI International
Joint Conference on Artificial Intelligence, 2016.

[28] S. Mahadevan, M. Ghavamzadeh, et al., “Hierarchical Approaches to
Concurrency, Multiagency, and Partial Observability,” Learning and
Approximate Dynamic Programming: Scaling up to the Real World,
2004.

[29] M. Ghavamzadeh, S. Mahadevan, et al., “Hierarchical multi-agent
reinforcement learning,” Auton Agent Multi-Agent Sys, 2006.

[30] M. Liu, K. Sivakumar, et al., “Learning for Multi-robot Cooperation
in Partially Observable Stochastic Environments with Macro-actions,”
2017.

[31] C. Amato, G. D. Konidaris, et al., “Planning with Macro-Actions
in Decentralized POMDPs,” International conference on Autonomous
Agents and Multi-Agent Systems, 2014.

[32] Omidshafiei, Shayegan and Agha-Mohammadi, Ali-Akbar and others,
“Decentralized control of partially observable markov decision pro-
cesses using belief space macro-actions,” in International Conference
on Robotics and Automation, 2015.

[33] S. Ulbrich, S. Grossjohann, et al., “Structuring Cooperative Behavior
Planning Implementations for Automated Driving,” in IEEE Interna-
tional Conference on Intelligent Transportation Systems, 2015.

[34] M. Lauer and M. Riedmiller, “An Algorithm for Distributed Reinforce-
ment Learning in Cooperative Multi-Agent Systems,” in International
Conference on Machine Learning, ICML, 2000.

[35] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under
reward transformations: Theory and application to reward shaping,”
in International Conference on Machine Learning, ICML, 1999.

[36] M. Schaeffer, N. Shafiei, et al., “Comparing uct versus cfr in simul-
taneous games,” 2009.

[37] D. Silver, J. Veness, et al., “Monte-Carlo Planning in Large POMDPs,”
in Advances in neural information processing systems, NIPS, 2010.

	I Introduction
	II Related Work
	II-A Cooperative Driving
	II-B Hierarchical Reinforcement Learning

	III Problem Statement
	IV Approach
	IV-A Hierarchical Action Graph
	IV-A.1 Asynchronous decision making
	IV-A.2 Flexible design of MAs
	IV-A.3 Cooperation Level

	IV-B Decision Making without Communication
	IV-C Cooperative Reward Function
	IV-D Reward Shaping

	V Algorithm
	V-.1 Tree Policy
	V-.2 Simulation Policy
	V-.3 Backpropagation Policy
	V-.4 Final Selection and Execution

	VI Evaluation
	VI-A Learning of Macro-Actions
	VI-B Convergence
	VI-C Robustness when encountering non-cooperative drivers

	VII Conclusions
	VIII Acknowledgements
	References

