
Decentralized Planning of
Macro-Actions for Cooperative

Automated Vehicles with Hierarchical
Monte Carlo Tree Search

Master’s Thesis of

Chenyang Zhou

Institute of Measurement and Control
Karlsruhe Institute of Technology

Reviewer: Prof. Dr.-Ing. Christoph Stiller
Advisors: Karl Kurzer, M.Sc.

Maximilian Naumann, M.Sc.

Karlsruhe, Februrary 2018

KIT – The Research University in the Helmholtz Association www.kit.edu

Declaration / Erklärung

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller bere-
its bekannten Hilfsmittel selbständig angefertigt, alle benutzten Hilfsmittel vollständig
angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert
oder mit Abänderungen entnommen wurde.

Chenyang Zhou
Karlsruhe, 28.02.2018

Abstract

Although motion planning in automated driving has been studied for a long time, to-
day’s automated vehicles still lack the ability to cooperate implicitly with others. This
thesis presents a Monte Carlo Tree Search (MCTS) based approach: Decentralized Hi-
erarhical Monte Carlo Tree Search (DecH-MCTS), to achieve decentralized planning of
macro-actions for cooperative automated vehicles. Based on the assumption of perfect
perception and cooperative agents, the agent reward function combines both ego and oth-
ers’ reward so that the resulting behaviors can be considered cooperative. Because the
performance of MCTS is dominated by its effective search depth, macro-actions, which al-
low temporal extension from one to multiple time steps, are integrated into the MCTS to
increase the effective search depth. Inspired by hierarchical reinforcement learning meth-
ods, we propose the notion of a hierarchically bounded return for the integration process.
Distributed reinforcement learning as well as Decoupled Upper Confidence bound Tree
(DUCT) (a variant of MCTS) methods are considered to realize decentralized decision
making in the multi-agent system. Without hard-coded policies for macro-actions, the
algorithm simultaneously learns policies over and within macro-actions.

The proposed method is evaluated under several conflict scenarios based on the comparison
with the classical MCTS, which shows that our algorithm outperforms the classical version
in terms of faster and better convergence. Its robustness in heterogeneous environments is
examined later and the result demonstrates that DecH-MCTS is able to generate feasible
solutions when encountering unknown drivers.

Contents

Abstract v

Acronyms ix

1. Introduction 1
1.1. Motivation . 1

1.2. Goal Description and Limitations . 1

1.3. Outline . 2

1.4. Presupposed Knowledge . 2

2. Fundamentals and Related Work 3
2.1. Markov Decision Process . 3

2.1.1. Classical MDP . 3

2.1.2. Semi-MDP . 4

2.1.3. Multi-Agent (Semi-)MDP . 5

2.2. Reinforcement Learning and Planning . 6

2.2.1. Simulation-based Search . 6

2.2.2. Hierarchical Reinforcement Learning 7

2.2.3. Monte Carlo Tree Search . 9

2.2.4. Monte Carlo Tree Search in Simultaneous Move Games 10

2.3. Related Work . 11

2.3.1. Cooperative Automated Driving . 11

2.3.2. Monte Carlo Tree Search with Macro-Actions 13

2.3.3. Macro-Actions in Multi-Agent Systems 14

3. Underlying Conditions and Preliminaries 15
3.1. Underlying Conditions . 15

3.2. Preliminaries . 15

3.2.1. Nomenclature . 15

4. Concepts 17
4.1. Planning with Primitive Motions . 17

4.1.1. Action Space . 17

4.1.2. Reward Function . 18

4.1.3. Monte Carlo Learning . 20

4.1.4. Decentralization . 20

4.2. Planning with Macro-Actions . 21

4.2.1. Design of Macro-Actions . 21

4.2.2. Termination Scheme . 23

4.2.3. Reward Function . 23

4.2.4. Learning with Hierarchically Bounded Return 23

viii Contents

5. Implementation 27
5.1. Overview . 27
5.2. Tree Policy . 27

5.2.1. Selection . 29
5.2.2. Expansion . 30

5.3. Simulation Policy . 31
5.4. Backpropagation . 31

5.4.1. Reward Collection . 31
5.4.2. Computation of Hierarchically Bounded Return 32

5.5. Final Selection and Execution . 33

6. Evaluation 35
6.1. Test Scenarios . 35

6.1.1. Free Drive . 35
6.1.2. Merge . 35
6.1.3. Double Merge . 36
6.1.4. Overtaking . 36
6.1.5. Bottleneck . 36
6.1.6. Open Loop . 37

6.2. General Applicability . 37
6.3. Performance Analysis . 38

6.3.1. Flexible Learning of Macro-Actions 38
6.3.2. Faster Learning than Classical MCTS 41
6.3.3. Robustness . 45

7. Conclusion and Future Work 51
7.1. Conclusion . 51
7.2. Future Work . 51

A. Appendix 53
A.1. Parameter Settings . 53
A.2. Scenario Descriptions . 54
A.3. Solutions found by DecH-MCTS . 55
A.4. Computation Time . 55
A.5. Original Simulation Result in the Evaluation of Learning Speed 55

List of Figures 67

List of Tables 69

Bibliography 71

Acronyms

DecH-MCTS Decentralized Hierarhical Monte Carlo Tree Search
Dec-SMDP Decentralized Semi-MDP
DQN Deep Q-Network
DUCT Decoupled Upper Confidence bound Tree

GLIE Greedy in the Limit with Infinite Exploration

HRL Hierarchical Reinforcement Learning

ISMCTS Information-Set MCTS

MAMDP Multi-Agent MDP
MAXQ MAXQ Value Function Decomposition
MCTS Monte Carlo Tree Search
MDP Markove Decision Process

OL-MCTS Option Learning MCTS

PBRS Potential Based Reward Shaping
POMDP Partially Observable MDP

RL Reinforcement Learning

SMDP Semi-MDP

UCB1 Upper Confidence Bound
UCT Upper Confidence bound Tree

1. Introduction

1.1. Motivation

Compared with the traditional maneuver planning methods, human drivers take other
drivers’ reactions into consideration, enabling them to generate cooperative plans. Al-
though a variety of cooperative planning approaches for vehicles have been proposed re-
cently which take the interdependence of one’s own action and the others’ actions into
account, it is still difficult to make this reality considering the required communication
between vehicles and the respective computational demand.

Taking the existence of human drivers into consideration, V2X communication should not
be compulsory to achieve cooperative planning [NS17, NOB+17]. Additionally, to realize
online planning in multiple vehicles is computationally demanding, because the number
of possible outcomes grows exponentially as the number of agents increases and plans for
longer time horizons.

MCTS has shown promising performance on multiple occasions facing problems of this
kind. The most popular example is AlphaGo which reaches super-human performance
in the game of Go [SHM+16a, SSS+17a]. It is shown that the performance of MCTS is
dominated by its effective search depth [KMN99]. Considering that multi-agent problems
have an inherently large branching factor, temporally extendable actions, in other words,
macro-actions demonstrate promising performance in increasing the search depth [SPS99].
As a result, the interplay of MCTS and macro-actions is of great potential in solving the
above mentioned challenges.

1.2. Goal Description and Limitations

To address the problem of decentralized decision making and planning for longer time
horizons, this work aims to realize the classical MCTS for decentralized maneuver planning
and to integrate the macro-actions to increase the effective search depth.

Contribution

We propose the algorithm Decentralized Hierarchical Monte Carlo Tree Search (DecH-
MCTS) to achieve planning of macro-actions in a decentralized manner. Within this
algorithm the contributions are:

• Four types of macro-actions are designed in the form of a hierarchical action graph;

2 1. Introduction

• Policies over and within the macro-actions can be online simultaneously learned so
that macro-actions are adaptively generated according to the environment;

• The comparison shows that DecH-MCTS outperforms classical MCTS in terms of
learning speed and optimality;

• Experiments in heterogeneous environment demonstrate great robustness of DecH-
MCTS.

Limitations

The action space of the primitive actions is strongly discretized: only acceleration, de-
celeration, do nothing, left change and right change with fixed trajectories are available.
Besides, the algorithm lacks online adaptive estimation of other agent agents, which is
useful for improving the robustness in highly complex scenarios. Lastly, the action space
after choosing a macro-action is limited to the macro-action’s child actions (see Sec. 4.2.1),
which results in the recursive optimality of the generated plan instead of global optimality.

1.3. Outline

This thesis is organized as follows: Chapter 2 gives an overview of the theoretical funda-
mentals about the Markove Decision Process (MDP), reinforcement learning and MCTS.
Current research on cooperative planning in automated driving area is also presented later.
The problem formulation and terminology is introduced in Chapter 3. The fundamental
concepts of our algorithm are presented in Chapter 4, followed by its implementation de-
tails in Chapter 5. Lastly, the algorithm is evaluated under multiple scenarios in Chapter
6.

1.4. Presupposed Knowledge

The knowledge on classical tree search algorithms and the basics of reinforcement learning
and planning is helpful for understanding derivations of formulas in this thesis.

2. Fundamentals and Related Work

This section provides the theoretical background of the proposed method. Firstly, the
markov decision process and its variants are presented, which serves as the basis for the
formulation of our problem as a Decentralized Semi-MDP (Dec-SMDP). The basic ideas
and classical methods of reinforcement learning are introduced, which provides the theo-
retical support for our proposed concepts in Chapter 4. MCTS is then illustrated as well
as its relevant variants. The practices in cooperative automated driving as well as the
planning of macro-actions are presented later.

2.1. Markov Decision Process

Markov Decision Process (MDP) is the most widely used framework to model a decision
process of an agent in a fully observable environment. The basic assumption is that the
next state is fully dependent on the present state and independent of all the past states,
which can be formulated in 2.1.

P (St+1|St) = P (St+1|S1, . . . , St) (2.1)

2.1.1. Classical MDP

Classical MDP can be described as a tuple 〈S,A, T,R, γ〉 and a policy π, where S is the
finite state space of the agent, A represents the finite action space, T is the transition
probability function p(s′|s, a) which specifies the probability of the transition from state
s to state s′ under action a ∈ A. R : S × A → R is the reward function with r(s, s′, a)
representing the value after the action a is executed. γ ∈ [0, 1] is a discount factor which
controls the influence of future rewards on the current state value. It can be seen as
how shortsighted the agent is: the closer gamma is to 1, the more shortsighted the agent
behaves.

Based on the reward and discount factor, the return Gt at time step t is defined as the
discounted cumulative reward starting from current step 2.2:

Gt = rt+1 + γrt+2 + · · · =
∞∑
k=0

γk−1rt+k(s, s
′, a) (2.2)

4 2. Fundamentals and Related Work

A policy π is used to guide the agent how to make decisions at current state, i.e. a
distribution over all possible actions a given state st, as Eq. 2.3 shows.

π(a|s) = p(At = a|St = s) (2.3)

The state value function V π(s) is defined to describe the ”quality” of being in state s under
policy π. It is calculated by the expected return from this state, which can be written as
Eq. 2.4.

V π(s) = E[Gt|St = s]

= E[rt+1 + γV π(St+1)|St = s]

=
∑
a∈A

π(a|s)[r(s, s′, a) + γ
∑
s′

p(s′|s, a)V π(s′)],
(2.4)

Similarly, the state-action value function Qπ(s, a) is the expected return from state s,
taking action a under policy π, as Eq. 2.5 shows.

Qπ(s, a) = E[Gt|St = s,At = a]

= r(s, s′, a) + γ
∑
s′

p(s′|s, a)V π(s′)

= r(s, s′, a) + γ
∑
s′

p(s′|s, a)
∑
a′

π(a′|s′)Qπ(s′, a′),

(2.5)

The state value function and the state-action value function are dependent on the taken
policy. Since the agent wants to maximize its long-term utility (expected return), the
optimal value functions V ∗(s), Q∗(s, a) are the functions with maximum value among all
policies 2.6:

V ∗(s) = max
π

V π(s)

Q∗(s, a) = max
π

Qπ(s, a)
(2.6)

We can obtain the optimal policy by maximizing over Q∗(s, a), i.e.,

π∗(a|s) =

{
1 if a = argmina∈AQ

∗(s, a)
0 otherwise

, (2.7)

which means that the optimal policy is obtained once Q∗(s, a) is known. The problem of
obtaining Q∗(s, a) is intensively studied in the area of reinforcement learning illustrated
in Sec. 2.2.

2.1.2. Semi-MDP

By extending the action from one time step (primitive action) to multiple time steps
(macro-action), the MDP is transformed into the Semi-MDP (SMDP), which was firstly
defined by [BD95]. For example, a primitive action can be move left or move right, a macro-
action can be go to the door that involves multiple calls of primitive actions. Suppose that
under policy µ(a|s), an action a is executed for τ time steps and the state is transferred
from s to s′, the transition probability is written as p(s′, τ |s, a). The state and state-action
value functions for an SMDP are generalized as Eq. 2.8.

2.1. Markov Decision Process 5

St

t t + ⌧

St

t t + ⌧

St

t t + ⌧

terminated

terminated terminated
a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

a0
1

interrupted

idle

tall tany tcontinue

a = (a1, a2, a3, a4) a = (a1, a2, a3, a4) a = (a1, a2, a3, a4)

Figure 2.1.: Three termination schemes [RM03]: in tall, a1, a2 and a3 have shorter dura-
tions and are kept idle to wait for the termination of a4; tany interrupts all
other unfinished macro-actions a2, a3 and a4 when a1 firstly terminated; in
tcontinue, the termination and selection of the next action are independent.

V µ(s) =
∑
a∈A

µ(a|s)[r(s, s′, a) + γτV µ(St+τ)]

Qµ(s, a) = r(s, s′, a) +
∑
s′,τ

γτp(s′, τ |s, a)
∑
a′

µ(a′|s′)Qµ(s′, a′)
(2.8)

2.1.3. Multi-Agent (Semi-)MDP

Extending MDP from the single agent domain to the multi-agent domain, we obtain the
Multi-Agent MDP (MAMDP), which can be defined by the tuple 〈Υ,S,A, T , R, γ〉. Υ
is the finite set of agents indexed by i ∈ 1, 2, . . . , n, with each having an action space
A(i). A = ×A(i) represents the joint action space of Υ. S = ×S(i) represents the joint
state space of Υ with S(i) being the finite state space of one agent. T is the transition
probability function p(s′|s,a) which specifies the probability of the transition from state
s to state s′ under the joint action a formulated by each agent’s choice. R : S × A → R
is the reward function with r(i)(s, s′,a) representing the reward after the joint action a
is executed. γ is the discount factor (usually constant for each agent) and has the same
definition in the classical MDP.

The solution to the MAMDP is the joint policy π = 〈π(1), . . . , π(n)〉, where π(i) denotes
the individual policy for each agent. By replacing the reward of the action a in MDP (Eq.
2.4 and Eq. 2.5) with the reward for the joint action a, we get the state value function
and the state-action value function for the MAMDP.

Taking the macro-actions into consideration, the MAMDP can be generalized into Semi-
MAMDP. Since the macro-actions have different durations, the termination of the joint
action a depends on the pre-defined termination scheme according to [RM03] and Fig.
2.1:

• tall keeps some agents idle to wait for others finishing their actions. The decision
epoch takes place when all agents terminate their actions.

• tany simply interrupts all macro-actions being executed when any one finishes its
own action,

• tcontinue allows asynchronous decision making. Each agent independently decides its
next action once it terminates its current action.

6 2. Fundamentals and Related Work

value/policy

experiencemodel

acting

model learning

planning direct

RL

Figure 2.2.: Learning and Planning [KLM96]: the agent acts in the environment to col-
lect experience. Direct RL (model-free RL) methods learn policies directly
while, while model-based methods approximate a model of the environment
and finishes the learning and planning based on the approximated model.

Clearly, the first two schemes tall and tany require a forced synchronization of the decision
epochs and can be only realized in a centralized way, while the tcontinue allows decentralized
asynchronous decision.

2.2. Reinforcement Learning and Planning

According to [KLM96], Reinforcement Learning (RL) solves the problem that an agent
learns to maximize the long-term utility through the interaction with the world. The
interaction process is often modeled as an MDP as Sec. 2.1.1 describes. RL provides
many practical methods to solve the MDP. For details please refer to the book [SB16].

One popular classification criteria of these methods is whether the outside world is explic-
itly modeled: model-based or model-free learning. As Fig. 2.2 shows, model-free learning
methods directly learn the policy without modeling the world, such as temporal difference
(TD) learning [BSA83] and Q-learning [Wat89]. Model-based learning methods firstly ap-
proximate the world with a model, i.e., the transition matrix T mentioned in Sec. 2.1.1,
and plan the behavior according to the model, like the Dyna algorithm [Sut91]. These two
kinds of methods are closely related with each other and can be used simultaneously in
practice.

2.2.1. Simulation-based Search

Simulation-based search methods can be viewed as an example of the combination of
direct RL and planning in Fig. 2.2. However, instead of approximating a model from
the experience, a simulator is given and the agent learns from the simulated experiences
starting from the current state st. Using the simulation policy π, the agent simulates
M episodes from st to sT : {st, amt , rmt+1, s

m
t+2, . . . , s

m
T }Mm=1 and builds a search tree which

contains the visited states and actions in its nodes. Based on the Monte-Carlo evaluation,
which is the mean value of the returns from these M episodes, the state-action value
Q(s, a) is approximated with Eq.2.9:

Qπ(s, a) =
1

N(s, a)

M∑
m=1

T∑
u=t

1(su = s, au = a)Gu, (2.9)

where 1(su = s, au = a) is a function which returns 1 at su = s, au = a and 0 otherwise.

After the evaluation, the simulation policy π is improved because we get a better approxi-
mation of the Q-values. The next K simulations can be executed by maximizing over the
approximated Q-values, i.e., at = argmaxa∈AQ(st, a). This procedure of simulation and
evaluation can be repeated and the learned Q-values are proven to converge to the optimal
value Q∗.

2.2. Reinforcement Learning and Planning 7

2.2.2. Hierarchical Reinforcement Learning

To address the problem of combinatoric explosion at longer horizons, the learning process
of the policies is divided into a hierarchical structure and called Hierarchical Reinforcement
Learning (HRL). Intuitively, the learned policy by HRL is also represented by a hierarchical
structure π = {π0, π1, . . . }.
The temporal abstraction is one major part of HRL. Here the temporally extendable
actions (or macro-actions) based methods are intensively studied. Based on the SMDP (see
Section 2.1.2), there are three popular learning frameworks in this area: Option [SPS99],
HAM (Hierarchical Abstract Machine) [PR98] and MAXQ Value Function Decomposition
(MAXQ) [Die00]. Here the first and last one are introduced.

2.2.2.1. Option

Sutton [SPS99] firstly structured previous approaches in the learning with SMDPs and
proposed the first comprehensive framework, Option, to solve the reinforcement learning
problem in the SMDP environment.

The macro-actions here are called options o ∈ O. Each option has three components
〈I, π, β〉, where

• I ⊆ S is the initiation set which specifies if this option is available at the current
state,

• π : S ×A → [0, 1] is the above mentioned policy for this macro-action,

• β : S → [0, 1] is the probability that the macro-action terminates at the current
state.

Note that for primitive actions these three components are defined as π(a|s) = 1, β(s) = 1
and I = S.

Suppose that an option o is invoked at time t and terminates after τ steps. The reward of
this option is defined as the discounted cumulative reward within this period, as Eq. 2.10
describes.

ro =

τ∑
k=1

γk−1rt+k(s, s
′, a) (2.10)

The state transition probability from state s to s′ is written as Eq. 2.11

poss′ =

∞∑
k=1

p(s′, k|s, o)γk, (2.11)

where the p(s′, k|s, o) represents the probability of option o terminating at state s′. The
policy over options is defined as µ : S×O → [0, 1]. Referring to Eq.2.8, the value functions
in the option framework are written as Eq. 2.12:

V µ(s) =
∑
o∈O

µ(s, o)[ro + γτV µ(St+τ)]

Qµ(s, o) = ro +
∑
s′

poss′
∑
o′

µ(o′|s′)Qµ(s′, o′)
(2.12)

The Q-learning [WD92] was firstly adopted to learn the policy [SPS99] based on the value
functions in SMDP. But the update rule in traditional Q-learning does nothing until the

8 2. Fundamentals and Related Work

current option terminates. This sometimes restricts the algorithm’s performance due to
the delayed update. The interruption of an option was explored to address such problem:
when another option is better evaluated under current state, the current option policy
is interrupted and the better one is invoked. However, this requires the evaluation of all
options at every state. Later, [Pre00] proposed the intra-option learning method to achieve
flexible options and proved their convergence to iterative optimality.

2.2.2.2. MAXQ Value Function Decomposition

Dieterrich [Die00] developed the MAXQ framework to solve the hierarchical RL problem.
Instead of having one single SMDP, a hierarchy of multiple SMDPs (called subtasksMi) are
built based on the decomposition of the original MDP which is generalized as the root task
M0 in the hierarchy of SMDPs. The solutions to all subtasks can be learned simultaneously.
To solve the root task M0, a series of its subtasks Mi are executed. Recursively, to solve the
subtask Mi, the sub-subtasks are executed according to the policy πi of Mi until primitive
task is encountered.

This hierarchical structure is shown in Fig. 2.3 as a task graph with the example in
the taxi domain. There are a total of four places R,G,B, Y in the environment. The
passenger appears randomly at one of four places and has a destination of another one.
The taxi driver needs to navigate to the passenger, pick up the passenger, navigate to the
destination and drop off the passenger.

A hierarchical task graph is manually designed to structure this problem into a hierarchical
reinforcement learning problem. The scenario, i.e., take the passenger to the destination,
is abstracted as the root task M0. Under root task there exist two subtasks Mi: Get and
Put which are called the children of M0. The subtask Get is further decomposed into
Pickup, a primitive task, and Navigate, a sub-subtask that is again decomposed into four
primitive tasks.

Root

Get

Pickup Navigate Dropoff

North South East West

Put

R G 4

3

2

1

Y B 0

0 1 2 3 4

Figure 2.3.: R,G,B, Y are four locations in this 5×5 grid world with bold lines representing
obstacles. The passenger appears randomly in one of these four places and
has a random destination in the rest three locations. The taxi moves one cell
each time and needs to bring the passenger to destination.

The (sub)task is similar to an option with the three components 〈I, π, β〉 in Sec.2.2.2.1.
The differences are twofold as illustrated in [BM03]. On the one hand, the (sub)tasks in
the MAXQ framework explicitly own a set of lower tasks (in other words, child tasks).
On the other hand, the MAXQ framework adopts the pushdown stack mechanism in the
implementation. The newly chosen subtask is pushed to the top of stack and will be firstly
executed at each time step. After execution, the terminal conditions of all remaining tasks

2.2. Reinforcement Learning and Planning 9

in the stack are examined and the terminated tasks are popped. The solution to this
hierarchical task graph is defined as a hierarchy of policies π = {π0, . . . , πn} with πi being
the policy of subtask Mi. The value function of the task Mi with policy πi, denoted as
V πi(s), is written as

V πi(s) = E[

∞∑
k=0

γkr(s, s′, a)|s0, πi] (2.13)

Assuming that within subtask Mi the subtask Mj is chosen and takes N steps to finish
according to its policy πj , the state-action value function for choosing Mj is written as
Eq. 2.14

Qπi(s,Mj) = E[
N−1∑
k=0

γkr(s, s′, a)|s0, πj] + E[
∞∑
k=N

γkr(s, s′, a)|sN , πi] (2.14)

Obviously, the first part is the value function of task Mj at state s0, in other words, the
discounted cumulative reward for executing the child task Mj . Eq. 2.14 can be further
rewritten as the Bellman equation form

Qπi(s,Mj) = V πj (s) +
∑
s′,N

pπj (s′, N |s, j)γNQπi(s′, π(s′)) (2.15)

The latter part is called completion function and Eq. 2.15 is re-written as Eq. 2.16.

Qπi(s,Mj) = V πj (s) + Cπi(s′) (2.16)

The completion term C can be further decomposed according to Eq. 2.15 until primitive
tasks are encountered. As a result, the value function of the root task can be recursively
decomposed as the sum of the value functions of sub-tasks. This decomposition can be
implemented in the tree search algorithms, where a nested tree is built for each task and
the value function can be easily calculated (see Sec. 2.3.2).

2.2.3. Monte Carlo Tree Search

Monte Carlo Tree Search can be viewed as a variant of simulation-based search methods,
as illustrated in Sec. 2.2.1, which builds a forward search tree and uses the Monte Carlo
simulation to evaluate the states (or nodes) in this tree. A thorough overview of MCTS
and its extensions is given in [BPW+12]. One iteration in MCTS consists of four steps:
selection, expansion, simulation and backpropagation that are visualized in Fig. 2.4 with
the example of two driving cars.

Each node stores the information describing the current state variables, the visit count
N and Q(s, a) of all available actions. Selection of actions is represented by the edges
and the resulted state by executing the selected action is in the direct child node. One
iteration starts from the root node and keeps selecting promising child node until a not
fully expanded node is reached (selection). A new node is then expanded (expansion)
and the simulation starts from the expanded node until the termination conditions are
met (simulation). Finally the information gathered along this path is backpropagated
to all visited nodes in this iteration so that the state-action values Q(s, a) are updated
(backpropagation). After that a new iteration starts and the selection uses the newest
backpropagated tree to select a child node until the leaf node. After enough iterations
the algorithm converges to an optimal action sequence. We usually limit the number of
iterations considering the computational budget. Several strategies for the final selection

10 2. Fundamentals and Related Work

() () ()

selection expansion simulation backpropagation

Figure 2.4.: Monte Carlo Tree Search in the example of an overtaking maneuver: the
selection phase descends the tree by selecting promising children until a node
is encountered that has not yet been fully expanded. Upon expansion random
actions are simulated until the terminal conditions are fulfilled. The result
is backpropagated through all nodes along the chosen path. Eventually the
algorithm converges to an optimal action sequence.

in the built tree are available, such as choosing the action which has the highest action
value (max child), the highest visit counts (robust child) or the highest Upper Confidence
bound Tree (UCT) value (UCT child).

MCTS has many variants and the most commonly used is the UCT, which treats the
selection as a multi-arm bandit problem and uses the Upper Confidence Bound (UCB1)
[ACBF02] in Eq. 2.17 to guide the selection process. The selection chooses the child that
maximizes

UCB1 = Q(s, a) + Cp

√
2 lnN(s)

N(s, a)
. (2.17)

The first term Q(s, a) focuses on the exploitation and the second term stresses the explo-
ration with N(s) being the visit count of the parent node storing the state s and N(s, a)
being the visit count of the child node, i.e., the successor of the parent node taking action
a. The constant Cp is used to balance the exploration and exploitation dilemma: the larger
the Cp is, the stronger the exploration is. It is suggested by [KSW06] that Cp equals

√
2

with Q(s, a) ∈ [0, 1].

2.2.4. Monte Carlo Tree Search in Simultaneous Move Games

The success of MCTS in turn-based games has been proven in [SHM+16b, SSS+17b].
Simultaneous move games, in which all players make decision at the same time, is not
a trivial extension for MCTS, because the unknown state of other players requires that
MCTS should be able to handle the imperfect information. A simultaneous move game
can be visualized as a matrix game in Fig. 2.5, which depicts a 2-agent scenario with an
action space of 2 primitive actions. The number of possible outcomes in this scenario is
22 = 4 and totally 5 nodes are shown with one parent node and 4 child nodes.

2.3. Related Work 11

(+, +) (+,�)

(�, +) (�,�)
Agent 0

Agent 1

Figure 2.5.: Matrix Game with 2 agents owning 2 primitive actions each: acceleration +
and deceleration −. Four child nodes with different joint actions belong to the
root node. The root node is fully expanded.

During the selection phase of MCTS, each agent makes its own decision without knowing
others decisions. The individually chosen actions a(i) form the joint action a and a deter-
mines the transition to the child node. Several selection strategies are proposed, such as
the Decoupled UCT [BF09], Exp3 [ACBFS95], Sequantial UCT [DTW11], etc. Here the
method Decoupled UCT is introduced.

In DUCT, each agent i keeps recording its own action values Q(i)(s, a) and visit counts
N (i)(s, a) at state s, which means that Q(i)(s, a) is the average value from all simulations
that contain a(i) and N (i)(s, a) is the sum of visit counts of all child nodes which con-
tain a(i). Recall the example in Fig. 2.5, the N(s) is thus 4 and N (0)(s,+), N (0)(s,−),
N (1)(s,+), N (1)(s,−) are all equal 2. The UCT calculation takes place individually in each
agent and is thus decoupled, as Eq. 2.18 shows. Consequently, a new node is expanded
when the joint action is not encountered before, which is different from the classical MCTS
which expands node as long as it is not fully expanded. Theoretically, the tree can grow
deeper at the third iteration if these two agents made different choices (+ and −) in the
first two iterations.

DUCT = Q(i)(s, a) + Cp

√
2 lnN(s)

N (i)(s, a)
(2.18)

2.3. Related Work

This section introduces the related work in the fields of cooperative automated driving
and planning with macro-actions.

2.3.1. Cooperative Automated Driving

Instead of treating other traffic participants as unchangeable obstacles, cooperative plan-
ning considers other’s anticipation and reaction of the ego vehicle’s behavior and tries to
attain the global optimum. The first successful demonstration of cooperative automated
vehicles emerged from the California PATH program [SH96] in the 1990s, where the notion
of string stability is introduced to maintain the stability of a group of automated vehicles.
Later in 2007, [SFK07] introduces the research project on cooperative vehicles in Germany
which explores the potential of cooperative perception and action planning and outlines
the software and hardware structures.

Till now there exists no standard definition about cooperative behaviors. In this work, we
adopt the definitions from [DP14] which specifies cooperative behavior and its necessary
preconditions, as Fig. 2.6 shows.

12 2. Fundamentals and Related Work

rational-cooperative
altruistic-cooperative
egoistic-cooperative

irrational-uncooperative
altruistic-uncooperative

egoistic-uncooperative
u1

u2

u1,rel

u2,rel

reference point

reference line

Figure 2.6.: Definition of Cooperative Behaviors [DP14]: the gray point is the reference
point of current maneuver combination. The reference line passes through this
point and has a slope of −1. All maneuver combinations which locate above
this reference line are considered cooperative. The cooperative combinations
can be further divided based on the relative gain/loss of each agent’s utility.

Besides the uncooperative and cooperative behaviors, the cooperative behaviors are further
divided into altruistic, rational and egoistic cooperation based on the increase and decrease
on the own and others’ utilities. A set of possible cooperative maneuvers are predefined
based on quintic polynomial trajectories which are optimized considering the safety, energy,
time, as well as driving comfort. Assuming that utilities of all agents can be perfectly
estimated and that they are perfect substitutes, the algorithm based on the exhaustive
search finds the maneuver combination with the maximum utility within the set of possible
combinations. Since all agents are homogeneous, every agent will find the same maneuver
combination in a decentralized manner. The algorithm is tested under two scenarios: one
vehicle needs to merge in the other vehicle’s current lane, both of two vehicles need to
merge to the same lane. However, this method is not suitable for larger domains since
the exhaustive search is computationally demanding and the heterogeneous environment
factors, such as uncooperative vehicles, are not considered.

Similarly, cooperation in the merge scenario is detailed analyzed in [MLA17] based on
the pre-defined maneuver templates. However, each template is not designed for a single
vehicle but a group of maneuvers for all vehicles, thus requiring a centralized decision
making. The templates are derived based on optimal control theory. Both lateral and
longitudinal movements are optimized with physical constraints. During the online oper-
ation the feasibility of each template is checked according to the current situation using
exhaustive search. Since the templates are designed for all agents, the exhaustive search
has a computational complexity of O(n) with n being the number of templates.

[LKK16] first explored the potential of the Monte Carlo Tree Search algorithm for coopera-
tive driving. They implemented Information-Set MCTS (ISMCTS) presented in [CPW12]
to ensure decoupled decision making, and conducted decentralized planning. Similar to
[DP14] they define a set of high-level actions, resembled by action primitives, with an

2.3. Related Work 13

action duration of 1 time step (1 second). They demonstrate the algorithms capabilities
in three different merge scenarios, with up to three vehicles directly interacting with the
ego vehicle, while the others were merely guided by an IDM. However, they are restricting
the number of lane changes in the planning horizon to one.

[SSSS16] applies deep reinforcement learning methods for maneuver planning in a double
merge scenario. They design an option graph to specify the routine of decision making. For
example, a traverse on this graph can be root→ merge→ left change → go→ accelerate,
where the first four items can be regarded as macro-actions and accelerate is a primitive
action. Each node in the graph finds its policy represented by a neural network after the
offline training process. Experiments in light, mild and dense traffic demonstrate promising
result.

To the author’s best knowledge, current search on cooperative automated driving mostly
requires a lot of offline work on the maneuvers, such as predefined maneuver template or
offline trained neural network. Online generation of maneuver plans suffers the scalability
problem and has a relatively shallow planning horizon.

2.3.2. Monte Carlo Tree Search with Macro-Actions

Till now, approaches that integrate the macro-actions into MCTS can be divided into two
categories considering the learning process of macro-actions:

• pre-defined/offline learned macro-actions;

• online simultaneous learning of the policy over macro-actions and their respective
execution policy;

[PWC12, PPW+14] adopt the first idea and define macro-actions as the repetition of
actions for solving the physical traveling salesman problem. It is pointed out that different
durations of macro-actions are difficult to realize because the agent always prefers the
action with longer durations. Experiments show that these macro-actions yield much
better results than MCTS with primitive actions. However this approach is too restricted
and cannot be generalized to other applications considering their definitions of macro-
actions.

[dWRB16] investigates MCTS with macro-actions in the application of computer games.
They introduce Option Learning MCTS (OL-MCTS) which maintains the classical MCTS
procedure but replaces the action space with defined options (macro-actions). The internal
policies of macro-actions are pre-defined, offline trained or based on third algorithms. For
example, the macro-action go to location A invokes an A∗ planner. Experiments shows
that OL-MCTS outperforms classical MCTS in 13 out of 18 games .

[PRHK17] uses a Deep Q-Network (DQN) [MKS+13] to train a set of macro-actions offline
and integrate these learned macro-actions into the action space of MCTS, which achieves
more flexible macro-actions to an extent than traditional pre-defined ones since each action
is a trained neural network and has certain generalization ability. But this method requires
an offline storage of the trained macro-actions. The performance of the resulting MCTS
is strongly dependent on the training result of macro-actions.

The approaches based on the second idea are presented in [TT15, BSR16]. [TT15] adopts
the MAXQ framework and proposes a hierarchical MCTS algorithm, where each macro-
action is learned by a nested MCTS in the larger search tree and the simultaneous learning
of a hierarchy of policies is realized. The evaluation in the Taxi-domain shows very promis-
ing result in terms of learning speed and optimality.

14 2. Fundamentals and Related Work

2.3.3. Macro-Actions in Multi-Agent Systems

[GMM+06, LSO+17, SSSS16, AKK14] provide very good example in implementing macro-
actions into multi-agent systems. The following three challenges need to be addressed:

• Asynchronous decision making

As illustrated in Sec. 2.1.3, there exist three schemes: tall, tany and tcontinue. In
a decentralized environment, macro-actions of different agents end asynchronously.
Since the first two schemes tall and tany demands synchronization of decision making,
tcontinue is the only one suitable for our case.

• Flexible design of macro-actions

[SPS99] pointed out that naive pre-defined macro-actions are even more harmful
than only planning with primitive actions. To mitigate the risk, the policy inside
a macro-action should be learned online and be flexible according to the current
situation.

• Cooperation Level

[GMM+06] shows that learning of macro-actions can be distracted by lower level ac-
tions of other agents in the multi-agent-system and defines a cooperation level which
restricts cooperation to the higher level. Another similar example is the modeling of
localized macro-actions that are quite common in partially observable environments
[LSO+17, AKK14, Omi15], where the agents do not consider cooperation at the level
of primitive actions. Modeling of this kind is useful when localized macro-actions
are sufficient, such as in the classical resource-collection, surveillance-and-rescue do-
mains. However, for cooperative automated driving, cooperation is required for both
macro-actions and primitive actions to solve conflict scenarios. Neither localized
macro-actions nor restriction of cooperation of higher levels is applicable.

3. Underlying Conditions and
Preliminaries

3.1. Underlying Conditions

Before introducing the concepts of our algorithm, the underlying conditions are explained
as follows:

• The learning is based on self-play mechanism: The ego agent is assigned with index
of 0 and has its own modeling of other agents, thus formulating a multi-agent system
where the learning process takes place.

• The modeling of other agents refers to the estimated desire and reward function of
others. The structure and parameters of the reward function among different agents
can vary with agents’ property, such as higher cost of deceleration and acceleration
of trucks than personal cars.

• The ego agent can perfectly percept the state of other agents, i.e., the state is always
fully observable.

• The state variables of an agent include the longitudinal and lateral positions (x and
y), current lane, velocities (ẋ and ẏ) and accelerations (ẍ and ÿ).

3.2. Preliminaries

The problem of decentralized planning with macro-actions is formulated as a decen-
tralized (semi-)MDP (see Sec. 2.1.3) which is solved using hierarchical reinforcement
learning methods. The solution to this Dec-(S)MDP is the joint policy of all agents
Π = {π(1), π(2), . . . }.

3.2.1. Nomenclature

We use superscript i, j with bracket (i), (j) to indicate that one variable is related to an
agent. The subscript k indicates ordinary differences, such as different time steps. Besides,
the upper and lower cases of one symbol usually (except N and n) have similar implication
but the upper case refers to the variable itself while the lower case represents a specific
value of this variable. Other symbols and their definitions are collected in Table 3.1

16 3. Underlying Conditions and Preliminaries

Table 3.1.: Nomenclature

symbol Implication

t time with unit second
s, S state
a, A action
π, µ policy, the probability of choosing an action given the state
r, R reward
γ discount factor, representing the importance of successor states on the current state
N number of an element, usually the visit count of a node or an action
n node

g, G return, the discounted cumulative reward
x, y longitudinal and lateral position of the vehicle rear axle midpoint
l index of lanes starting from 0

V π(s) state value at state s, the expected return under policy π
Qπ(s, a) state-action value for taking action a at state s under policy π
tsim step length of one planning cycle, also the duration of the primitive actions
ws weight of the longitudinal acceleration in the reward function
wd weight of the lane change in the reward function
wv weight of the velocity deviation to the desired velocity in the reward function
wl weight of the lane deviation to the desired lane in the reward function

rcollision penalty when the vehicle collides
rinvalid penalty when the vehicle drives off the road
γ discount factor when calculating the potential based shaping term and the return
ε balance between the greedy and random selection
Cp weight of the exploration term in the UCT calculation

4. Concepts

4.1. Planning with Primitive Motions

We firstly conduct the introduction of classical MCTS for cooperative action planning
and use it as a baseline approach. Many parts in this section can be directly adopted
when planning with macro-actions in Sec. 4.2: the definition of primitive actions serve
as a basis of macro-actions; Moreover, the basic ideas of monte carlo learning of action
values and decentralization in planning with primitive actions also hold in planning with
macro-actions.

4.1.1. Action Space

Intuitively, the action space contains only primitive actions, which means that one action
lasts only one time step. Totally five actions are defined: acceleration, deceleration, do
nothing, left change and right change. Each action is described with the changes in longi-
tudinal velocity ∆ẋ and lateral position ∆y. The position of a vehicle refers to the lateral
and longitudinal position of the midpoint of rear axle in the world coordinate. The lateral
and longitudinal movements are calculated based on the fifth-order polynomials in Eq.
4.1 with ∆y, ∆ẋ and other boundary conditions. For detailed derivation please refer to
[WKZG12] and [DP14]. The solved trajectories of these five primitive actions are depicted
in Fig. 4.1.1.

x(t) = a5 · t5 + a4 · t4 + a3 · t3 + a2 · t2 + a1 · t+ a0

y(t) = b5 · t5 + b4 · t4 + b3 · t3 + b2 · t2 + b1 · t+ b0
(4.1)

left change

right change

deceleration

do nothing

acceleration

�y

y/[m]

x/[m]

Figure 4.1.: Trajectories of the five primitive actions

18 4. Concepts

4.1.2. Reward Function

The problem of determining the reward for each agent in a multi-agent system is studied
in the area of Credit Assignment. In the multi-agent system, a reward is given by the
environment when a joint action is executed. The simplest solution is to divide this
reward evenly between all agents, which is called global reward. Clearly, the lazy agent
and hard-working agent are thus equally rewarded. Under some circumstances, the agent
cannot receive sufficient feedback to its specific action, which might lead to poor scalability
in difficult problem [WT02]. Besides, when the global reward is not accessible, such as
the distributed computation application like the robot foraging domain [Win09], the credit
assignment must be done in other ways.

As opposed to the global reward, the other extreme is the local reward which is solely a
feedback of the agent’s own action regardless of others’ behaviors. This approach encour-
ages individual contribution but would result in a selfish learned policy. [Mat94] introduced
social reinforcement to the individual reward. Two types of social reinforcement are de-
fined: observational reinforcement obtained by observing others’ behaviors, and vicarious
reinforcement obtained whenever other agents are directly rewarded. The final reward
function is a weighted sum of the above mentioned components and the experiment in the
robot foraging domain shows better performance than the local reward.

In our application of cooperative automated driving, the problem is even more compli-
cated: there exists actually no explicitly practical goal for each agent – solving a scenario
with conflicting interests while maximizing the overall reward given each vehicle’s safety,
efficiency and comfort preferences. Here we design the reward function similar to the social
reinforcement and calculate the reward in two parts:

4.1.2.1. Local Reward

The local reward, i.e., the feedback of each agent’s own action includes three parts: action
cost, collision/invalidity penalty and potential based reward.

Action Cost

The action cost is calculated based on the longitudinal acceleration and the number of
changed lanes according to [AKM17], as Eq. 4.2 shows.

raction = ws

∫
ẍ2dt+ wd∆l, (4.2)

where ∆l indicates the number of changed lanes and ws, wd < 0 mean that the agent is
always trying to keep constant velocity and lateral position. Notice that the five primitive
actions are pre-defined with constant parameters and the derived trajectories are also
constant, so the action cost stays constant and a more complex function for the action
cost has equivalent effect with the tuning of the parameters ws, wd.

Collision and Invalidity Penalty

Besides the action cost, we also define a very large negative value to penalize actions which
lead to collision with other vehicles rcollision and off-road rinvalid. Considering the existence
of observational reinforcement (illustrated later), the collision penalty would double if the
cooperation factor λ = 1, which should be considered during the tuning of these two
parameters.

Potential Based Reward Shaping

In practice, the desire of each agent also needs to be considered as a reward term. For our
work the desire is expressed as as a certain velocity and lane position. Potential Based

4.1. Planning with Primitive Motions 19

Reward Shaping (PBRS) is used here to model the reward for getting closer to the desired
state, i.e., if the taken action brings the agent closer to its desired state, it will be rewarded
positively. As [NHR99] pointed out, PBRS can accelerate the convergence of the learning
process and is optimality invariant.

A potential function φ(s) is defined to determine the potential of each state. This function
4.3 is only dependent on the agent itself and has the global maximum at the desired state
with monotonically increasing from left and decreasing to the right side.

φ(s) = Φ− wv|vc − vd| − wl|lc − ld| (4.3)

In Eq. 4.3, vc, lc represent current velocity, current lane respectively and vd, ld are the
desired ones. Φ is a constant dependent on the deviation between initial and desired
states. In practice, it can be calculated at the beginning of the planning cycle based on
the deviation of initial state and desired state, as Eq. 4.4 shows.

Φ = wv|vini − vd|+ wl|lini − ld| (4.4)

wv and wl describe the importance of the velocity deviation and lane deviation with vini
and lini being the initial velocity and lane. Based on such formulation, the potential
function has a global optimum of Φ at the desired state and equals 0 at the initial state.
The closer the agent is to the desired state, the higher the potential value will be. The
potential based for transition from state s to s′ is written as

rφ = γφ(s′)− φ(s), (4.5)

where γ ∈ [0, 1] is the discount factor representing importance of future reward (see sec.
2.1.1). Essentially, rφ describes the change in the state. Thus, the local reward function
for each agent can be written as:

r
(i)
local = r

(i)
action + r

(i)
collision + r

(i)
invalid + r

(i)
φ

(4.6)

4.1.2.2. Observational Reinforcement

Assuming that each agent has perfect perception of others actions, such as velocity, ac-
celeration and all agents share the same parameters ws and wd, the action cost of other
agents can be assumed. The potential based shaping term could be also assumed if the
desired state of other agents are known or can be estimated. Thus the observational rein-
forcement is calculated the same as local reward using Eq. 4.6. Similar to [DP14, LKK16],
the cooperation factor λ (from λ(i) = 0 egoistic, to λ(i) = 1 fully cooperative) is introduced
as the weight of this term, as Eq. 4.7 shows.

r
(i)
ob = λ(i)

n∑
j=0,j 6=i

r
(j)
local (4.7)

The resulting reward function is shown in Eq. 4.8 and can be called the cooperative
reward.

r(i) = r
(i)
local + λ(i)

n∑
j=0,j 6=i

r
(j)
local, (4.8)

20 4. Concepts

where r
(i)
local refers to the local reward and the latter is the observational reinforcement,

more specifically, the discounted sum of assumed reward of other agents r
(j)
local based on

perception.

4.1.3. Monte Carlo Learning

Based on the cooperative reward function, the return in one iteration starting from t with

length τ is calculated with G(i) =
∑τ

k=0 γ
kr

(i)
t+k. Note that the return G(i) is for the joint

action a from the standpoint of agent i instead of the its own action a(i), because the
reward r(i) that each agent receives is based on the joint action a. Clearly, when all agents
have the same cooperation factor λ(i) = 1, the return G(i) in one iteration is the same for
each agent.

As explained before in Sec. 2.2.1, Q(s, a) ca be approximated without bias by the average
of returns from all iterations. By replacing the a with a in Eq. 2.9 and applying it in the
MCTS, the joint action value w.r.t. agent i , i.e., Qπ

(i)
(s,a) can be written as Eq. 4.9

Qπ
(i)

(s,a) =
1

N (i)(s,a)

N∑
n=1

G(i)
n (s,a), (4.9)

where G
(i)
n (s,a) =

∑∞
k=0 γ

kr(i) is the return in the n-th iteration. Note that this Q-value
is for the joint action a in the view of agent i instead of the single action a(i) because
the reward r(i) that each agent receives is based on the joint action a. Clearly, when
cooperation factors of all agents λ(i) equal 1, they have the same Qπi(s,a).

4.1.4. Decentralization

Since agents are not communicating, the action planning needs to be conducted in a
decentralize manner, where each agent can only control its own action rather than the
joint actions for all agents. As explained in Sec. 2.2.4, the agent’s action-value estimation
Q(s, a) cannot distinguish among all joint actions containing this agent’s action and the
Decoupled-UCT should be used in the MCTS. Thus the agent i needs to estimate the state-
action-value Q(s, a(i)) based on all Q(s,a) that have a(i) at i-th position of a. Techniques
in distributed reinforcement learning in [LR00] are adopted to address the decentralization

problem. We conduct the marginalization among all Qπ
(i)

(s,a) to get Qπ
(i)

(s, a) with Eq.
4.10 based on the calculation of DUCT Eq. 2.18.

Qπ
(i)

(s, a(i)) =
1

N(s, a(i))

∑
a

1(a[i] = a(i))N(s,a)Qπ
(i)

(s,a), (4.10)

where N(s, a(i)) =
∑

a 1(a[i] = a(i))N(s,a) and 1(a[i] = a(i)) returns 1 when the i-th
position of a is a(i)) and 0 otherwise.

Combining Eq. 4.9 and 4.10, we get

Qπ
(i)

(s, a(i)) =
1

N(s, a(i))

∑
a

1(a[i] = a(i))G(i)(s,a) (4.11)

Eq. 4.11 means that the state-action value Qπ
(i)

(s, a(i)) is the mean of all returns after
executing the joint action a that contain a(i). This average can be written in an incremental
form Eq. 4.12 which is used as the update rule in the backpropagation step.

Qπ
(i)

(s, a(i))← Qπ
(i)

(s, a(i)) + α[G(i)(s,a)−Qπ(i)
(s, a(i))] (4.12)

4.2. Planning with Macro-Actions 21

1

2 3 4r
(i)
t+1

r
(i)
t+2

r
(i)
t+3

a2 a3

Q⇡(i)

(s, a2) Q⇡(i)

(s, a3)

G
(i)
1 (s, a2) G

(i)
2 (s, a2) G

(i)
1 (s, a3) G

(i)
2 (s, a3)

Q⇡(i)

(s, a(i))

Figure 4.2.: Update rule with example of a subtree starting from node 1

where α = 1
N(s,a) . This derivation process is visualized in Fig. 4.2 with a subtree starting

from node 1 followed by three child nodes 2, 3, 4. The red shadowed path is the newest
iteration and its information will be backpropagated to node 1. For agent i the joint
actions which lead to node 2 and 3, i.e., ~a2 and ~a3 have action a at position i. Eq.

4.9 is represented by Qπ
(i)

(s,a2) = 1
2(G

(i)
1 (s,a2) + G

(i)
2 (s,a2)). The old Qπ

(i)
(s, a) is

calculated based on the three yellow shaded iteration and can be written as Qπ
(i)

(s, a) =
1
3(G

(i)
1 (s,a2) +G

(i)
2 (s,a2) +G

(i)
1 (s,a3)), representing the Eq. 4.11. The backpropagation

at node 1 is written as Qπ
(i)

(s, a) ← Qπ
(i)

(s, a) + 1
4(G

(i)
2 (s,a3) −Qπ(i)

(s, a)) according to
the update rule Eq. 4.12.

4.2. Planning with Macro-Actions

As explained in Chapter 1, temporal abstraction is considered to increase the effective
search depth of MCTS by extending actions over several time steps (macro-actions). The
structure inside the macro-actions are not fixed like the examples in Sec. 2.3.2. Instead,
we adopt the approaches in the hierarchical reinforcement learning, more specifically, the
option and MAXQ framework, integrate them into the Simultaneous Move MCTS so that
all agents can simultaneously learn the policy over macro-actions and within macro-actions.
We name this approach Decentralized Hierarchical Monte Carlo Tree Search. The following
sections explain how the three challenges mentioned in Sec. 2.3.3 are addressed.

4.2.1. Design of Macro-Actions

Considering the listed conflict scenarios that require cooperative driving in [UGA+15], we
propose four macro-actions: overtake, merge in, make room and to desired velocity. The
decomposition techniques from the MAXQ framework is used to construct the hierarchical
action graph as Fig. 4.3 shows. Based on the definitions in the Option framework, each

22 4. Concepts

root
⇡root

to desired
velocity
⇡tdv

overtake

⇡ot

+ - 0 L R

make
room
⇡mr

merge
in

⇡mi

Figure 4.3.: Hierarchical Action Graph

macro-action has four components 〈I, π,A, β〉, where A is the set of available actions at the
immediate lower level. The primitive actions all come from Sec. 4.1, i.e., acceleration(+),
deceleration (-), do nothing (0), lane change left (L) and lane change right (R). Each macro-
action has a possible subset of these primitive actions. Note that to desired velocity and
merge in are connected with their A with a dotted line, which means that the primitive
actions are not always available at the current state. For example, when the current
velocity is smaller than the desire, only acceleration is available for the to desired velocity.
The solution to the whole scenario is generalized as the root macro-action that entails all
lower macro-actions. The initiation set I (or initial condition) and termination probability
β (or termination condition) of all actions are defined per Table 4.2.1.

Macro-Action Initial Condition Terminal Condition

overtake behind slower vehicle (w.r.t. ego ve-
hicle) and left lane exists

in front of slower vehicle

merge in not in desired lane in desired lane

make room always possible always possible

to desired velocity not at desired velocity at desired velocity

Table 4.1.: Initial and terminal conditions for macro-actions

Each macro-action has its own policy, thus forming a hierarchy of policies for each agent
i: π(i) = {πroot, πtdv, πmr, πmi, πot}, where πroot is namely the policy over macro-actions
and others are policies within macro-actions. The learning process takes place in all levels
and converges simultaneously. [BSR16] shows that prior knowledge can accelerate the
learning process without harming the optimality compared with a random initial policy.
This may not hold true when the state space is extremely large, as [SSS+17a] presented
in the Go-game that without human knowledge the program can achieve super-human
performance. In order to achieve faster convergence, we also implement the simple prior
knowledge for the macro-action overtake according to the common sense of executing an
overtake maneuver. Greedy in the Limit with Infinite Exploration (GLIE) technique is a
technique to balance the prior knowledge and the random exploration (see Sec. 5.2.1.2).
The comparison of the convergence between two versions is conducted in Sec. 6.3.2. and

4.2. Planning with Macro-Actions 23

shows that prior knowledge can accelerate the learning and is optimality invariant.

It should be mentioned that the hierarchical action graph also applies in the planning of
primitive actions, where only the macro-action root exists with five child actions, namely
the five primitive actions. Thus we can simply change the action graph to switch between
two versions of planning.

4.2.2. Termination Scheme

There are three termination schemes mentioned in Sec. 2.3.3: tall, tany and tcontinue.
Obviously, tall and tany which require centralized decision making are not suitable for our
application. We use the tcontinue scheme during the learning process, which means that the
macro-action of a certain agent terminates according to the state without being influenced
by others.

4.2.3. Reward Function

In SMDPs the reward for a macro-action is defined as the discounted cumulative rewards
within this macro-action according to Eq. 2.10 [SPS99]. Note that this definition does not
consider the potential based shaping term that we mentioned in Sec. 4.1.2. Considering
the definition of the potential-based reward shaping, the shaping term for a macro-action
m is written as Eq. 4.13 with τ being the duration of this macro-action.

rm,φ = γτφ(st+τ)− φ(st) (4.13)

As a result, the shaped local reward for a macro-action m of agent i in the multi-agent
system is

r
(i)
m,local =

τ∑
k=1

γk−1r
(i)
t+k,action + γτφ(i)(st+τ)− φ(i)(st) (4.14)

It can be proven that Eq. 4.14 is equivalent to the discounted sum of the shaped local
rewards in each single step, as Eq. 4.15 shows.

r
(i)
m,local =

τ∑
k=1

γk−1r
(i)
t+k,local (4.15)

Eq. 4.15 also applies in the multi-agent system, which simply replaces the local reward

r
(i)
local with the global reward r(i), as Eq. 4.16 shows.

r(i)m =

τ∑
k=1

γk−1r
(i)
t+k (4.16)

4.2.4. Learning with Hierarchically Bounded Return

The learning process of this hierarchy of policies is based on the MAXQ framework. As
mentioned in Sec. 2.1.1, the value function is defined based on the policy. Equations 2.13
and 2.14 point out that discounted cumulative reward is constrained within the current
following policy. (Note that the policy in the classical MDP settings has no specified termi-
nation condition, so the∞ is written in the definition of value function Eq. 2.4.) Applying
this notion to our problem we get the definition of Hierarchically Bounded Return:

Lemma: The return of choosing child action ac at state s under parent action ap is the
discounted cumulative rewards starting from s, following πc then πp of the parent action
until πp ends.

24 4. Concepts

overtake

left change

acceleration

right change

to desired velocity

acceleration

search depth = 0

search depth = 1

search depth = 2

r1

r2

r3

r4

g⇡ot(s0, L) = �0r1 + �1r2 + �2r3

search depth = 3

search depth = 4

g⇡root(s0, overtake) = �0r1 + �1r2 + �2r3 + �3r4

g⇡ot(s1, +) = �0r2 + �1r3

g⇡ot(s2, R) = �0r3

g⇡root(s3, tdv) = �0r4

g⇡tdv (s3, +) = �0r4

Figure 4.4.: Hierarchically Bounded Return in the example of single agent

Suppose there exists one iteration with search depth 4 in the single agent domain as
Fig. 4.4 shows. The nodes where the decisions on the macro-action are made are also
explicitly shown. Note that the macro-action alone is not executable and thus cannot
transfer the state, that’s to say, state transitions are only possible when primitive actions
are decided. The rewards for all primitive actions are listed on the right side and the
calculation of returns on the left. It can be seen that the return for choosing macro-
action overtake under policy πroot includes rewards from r1 to r4 since πroot terminates
at depth = 4. Besides, V π(a, s) and Cπ(i, s, a) in Eq. 2.16 are respectively represented
by rovertake = γ0r1 + γ1r2 + γ2r3 according to Eq. 4.16 and γ3r4. Comparatively, the
return for choosing left change under policy πovertake only includes the reward from r1 to
r3 because overtake terminates at depth = 3.

The notion of hierarchically bounded return also holds in the multi-agent system, where
the reward for a single action is replaced by the cooperative reward according to Eq.
4.8 and 4.16. Considering the tcontinue termination scheme, the boundary of return is
only dependent on the own agent’s execution of macro-actions. Similar to the single
agent system, the state transition and reward are only possible when all agents make
a decision on the level of primitive actions. Hence, some agents need to make several
decisions in one time step from the root level until they reach the level of actions, e.g.,
root→ overtake→ acceleration, while others only need to make one decision if they are
already within a macro-action, e.g., make room→ deceleration.

Based on the hierarchically bounded return, the action value Qπi(s, a) is calculated ac-
cording to Eq. 4.11 and the update rule is the same as Eq. 4.12.

With the update rules described in the above sections 4.1 and 4.2, the state-action values
Q(s, a) are learned with multiple iterations based on MCTS. It can be seen as a table
which specifies value of each action in each state and we can find the optimal policy by
maximizing over all Q(s, a). Note that for planning with macro-actions, the output is a
decision sequence, such as root→ overtake→ acceleration→ The agent only execute
the first primitive action and then starts a new planning cycle. Whether the previously
learned macro-actions are preserved in the new cycle is optional. Planning a new cycle
from scratch is called hierarchical mode and preserving the information from last cycle is

4.2. Planning with Macro-Actions 25

called polling mode. Sec. 5.5 provides more details about this topic.

5. Implementation

Based on the concepts of planning with primitive actions and macro-actions, the imple-
mentation is illustrated in this chapter. Considering that the planning with primitive
actions serves as a baseline approach and can be seen as a simplification of the planning
with macro-actions (see Sec. 4.2.1), the following sections focus on the implementation of
MCTS with macro-actions.

5.1. Overview

The algorithm named Decentralized Hierarchical Monte Carlo Tree Search, abbreviated
as DecH-MCTS, is outlined in Algorithm 1. All parameters and action space are defined
offline. In every planning cycle, MCTS builds a search tree of possible future states
starting from the root node (capturing the initial state) within a given computational
budget, usually in form of CPU-time, number of iterations, etc. Policies over and within
the macro-actions are learned when building the search tree. In each iteration four steps are
executed: selection, expansion, simulation and backpropagation, where the selection and
expansion steps are included in the tree policy 1. Both the tree and simulation policies are
forward search and this forward search stops when it reaches the maximal search depth or
a terminal state or the vehicles are collided or off-road. Then the backpropagation update
all nodes along this path with newly gathered information.

Considering the notion of self-play mentioned in Chapter 3, each node stores a vector
of agents containing the ego agent and other modeled agents. The node can be indexed
by the search depth and joint action that leads to this node. Each agent has its action
space (hierarchical action graph) and state space, including the velocities, accelerations
and positions in both longitudinal and lateral directions, and the reward function.

5.2. Tree Policy

The tree policy includes the selection and expansion steps. The selection always prefers
untried actions, which is followed by the expansion of a new node. If all actions have
been already expanded, the selection chooses the action with the highest UCT value.
Consequently, a node in MCTS with a single agent keeps expanding until all available
actions have been tried and only after full expansion can the search tree grow deeper. By
contrast, an agent in the decentralized setting (or simultaneous move games) independently
selects the action with highest DUCT value and the choices of all agents form the joint

28 5. Implementation

Algorithm 1: Decentralized Hierarchical MCTS

Function Planning(Υ: agent space, A: action space, R: reward sequence):
a← ∅, R ← ∅
while problem not solved do

new root node n0 ← n〈a,Υ,A〉
a← DecHMCTS(n0,R)
ExecuteAction(a)

return

Function DecHMCTS(n0: root node, R: reward sequence):
while computational budget not reached do
〈nleaf ,R〉 ← TreePolicy(n0)
R ← SimulationPolicy(nleaf ,R)
BackPropagation(nleaf ,R)

return a←FinalSelection(n0)

Function TreePolicy(n: node):
do

for i← 1 to |Υ| do
a(i) ← ε− UCT (n, i)

a← [a, a(i)]

n←LookUp(n,a)
if n is not subnode then
R ←CollectReward(n,a)

while n 6= ∅
〈nleaf ,R〉 ← Expansion(n,a, R)
return nleaf ,R

Function Expansion(n,a, R):
construct new node nleaf based on n
if a is executable then

Execution(nleaf , a)
R ←CollectReward(nleaf , a)

return nleaf ,R

Function SimulationPolicy(n: node, R: reward sequence):
for i← 1 to |Υ| do

a(i) ← RandomSelection(A(i))

a← [a, a(i)]

if a is executable then
Execution(n, a)
R ←CollectReward(n, a)

return R

Function BackPropagation(n:node, R: reward sequence):
while n 6= n0 do

N(n)← N(n) + 1
for i← 1 to |Υ| do

N(a(i))← N(a(i)) + 1

G(i) ←∑a
(i)
p γtr(i)

Q(a(i))← Q(a(i)) + G(i)−Q(a(i))

N(a(i))

n← nparent

return

5.2. Tree Policy 29

action. If the formed joint action was not encountered before, the expansion will be
executed. As a result, the node can grow deeper once each agent has tried its available
actions once, which is independent of the number of joint actions.

5.2.1. Selection

The selection for the multi-agent system is decentralized. As a result, each agent must
keep track of the visit count and action value of every available actions for the calculation
of DUCT. In our implementation with C++, the std::map with keys being the action is
adopted and values being the state-action values Q(s, a).

5.2.1.1. UCT calculation

Considering that the exploration term Cp

√
2 lnN(s)

N(s,a(i))
ususally lies around 1, the exploitation

term Q(i)(s, a) is normalized according to the maximum and minimum among all available
actions. Thus Eq. 2.18 is modified as follows

DUCT =
Q(i)(s, a)−mina∈AQ(s, a)

maxa∈AQ(s, a)−mina∈AQ(s, a)
+ Cp

√
2 lnN(s)

N(s, a(i))
(5.1)

5.2.1.2. GLIE in the Selection

Selection according to the DUCT values is essentially a deterministic policy. We found
that the number of expanded nodes of the root node is mostly limited to the number of
available actions of each agent when we set the cooperation factor λ of all agents to 1,
even if the number of iterations reaches up to 10,000. This problem is firstly discussed in
[SSS09] which argues that the deterministic DUCT policy does not necessarily converge
to a Nash equilibrium and can be exploited. This argument also holds in our situation:

Suppose that there are totally n agents with m available actions each. At the first m
iterations, each agent has tried all available actions and formed m joint actions. In each
iteration, all agents’ rewards r(i) are the same because of λ = 1. Based on the update rule
4.12, the action value is equal to the ri of the corresponding a. At the (m+1)-th iteration,
each agent chooses an action using the DUCT value based on the previous calculated Q
and visit counts, i.e., N(s) = m and N(s, a) = 1 for all child nodes. As a result, the
selected joint action will be the one which was already selected in the last m iterations
and has the largest ri. The selection will adhere to this joint action until the exploration
term dominates the difference in the DUCT calculation.

To address this problem, [SSS09] proposed to use an ε-Nash Equilibrium strategy where
ε indicates how far we are from the equilibrium. The Counter Factual Regret (CFR in
[ZJBP08], equivalent to the UCT), an ε-Nash Equilibrium strategy, is compared with the
Decoupled UCT algorithm.

On the other hand, such problem can be also addressed by a stochastic DUCT policy.
[GS07] has tried to introduce the idea of GLIE into the UCT policy to ensure the ex-
ploration when combining the online and offline knowledge. GLIE is a group of different
techniques which injects limited randomness to the optimal policy 2.7 to ensure the ex-
ploration won’t be harmed by the poor trials at the start. We adopt this idea in our
implementation to provide the DUCT policy with stochasticity. The ε-Greedy, one of
the GLIE techniques, is adopted and the adapted DUCT is named as ε − DUCT . The
probability of choosing action a, i.e., π(a|s) is written as:

πε(a|s) =

{
1− ε+ ε

|A| if a = argmaxa∈ADUCT (a)
ε
|A| otherwise

, (5.2)

30 5. Implementation

where A is the set of available actions of size |A| and ε ∈ [0, 1] controls the randomness.
Larger ε means greater randomness. ε can be predefined or decay with the number of visit
counts, i.e. ε = 1

N(s) . Obviously, the randomness by a decaying ε decreases as the visit
count increases.

The ε−DUCT technique can be implemented in the following way:

Algorithm 2: ε−DUCT
ε← constant ∈ [0, 1] or 1

N(s)

generate a random number ξ ∈ [0, 1]
if ξ ∈ [0, ε) then

select one action according to the DUCT values
else

select one action randomly from available actions
return the selected action

5.2.2. Expansion

As stated before, when the formed joint action was not encountered, the expansion follows.
Because we adopt the tcontinue scheme and different macro-actions have different duration,
the selected joint action for the to-be-expanded node could contain a macro-action which
is not executable. Only the joint actions which consist of primitive actions can trigger
system transition and receive immediate reward. As a result, two kinds of implementation
are available: pack all selections from macro-action to the primitive action in one node or
explicitly expand the tree for every selection. The former requires complexer data structure
for storing the action values and visit counts and needs complex backpropagation design.
The data size of one node would be much larger. The latter one needs to construct nodes
for the non-executable joint actions, which seems like a waste of nodes but realizes a much
clearer data structure.

We adopt the latter approach and name the nodes for non-executable joint actions subn-
odes and introduce a new variable searchDepth to distinguish from the treeDepth. Ob-
viously, treeDepth increments always at newly expanded nodes while searchDepth only
does at non-subnodes.

In subnodes, the agent which has already chosen the primitive action needs to wait for
others. It should be stressed that such wait is actually not waiting for a certain time
but only a notion in terms of building a new node. This agent’s available action at the
subnode is only the current primitive action itself and will be preserved until the child
node is reached. Only when all agents select primitive actions, the joint action can be
executed according to the following section.

5.2.2.1. Execution

The hierarchical action graph is executed as a stack with LIFO rule. For the purpose
of clearance, each agent has two stacks: entryHierarchy and exitHierarchy. entry-

Hierarchy is constructed based on the exitHierarchy of the parent node with the newly
selected action being pushed back to the top. Obviously, the macro-action root locates
always at the bottom. If the node is non-sub, the joint action will be executed by each
agent and the termination condition of each action in the entryHierarchy will be ex-
amined. The exitHierarchy is based on its own entryHierarchy with the terminated
actions being popped out. Besides, the reward is only possible after the execution. The
received reward together with these two stacks will be stored in an extern vector named
as rewardSequence, which is detailed illustrated in Sec. 5.4.1

5.3. Simulation Policy 31

When executing primitive actions, the trajectory is calculated according to Eq. 4.1. The
collision checking is based [ZS10], where vehicles are approximated by a certain number
of circles. For implementation details please refer to [ZS10].

5.3. Simulation Policy

Domain knowledge can be implemented into the simulation phase to achieve better per-
formance, as [DU07] and [GS07] discussed. In our problem, the prior knowledge of macro-
actions is discussed in Sec. 4.2.1. Similar to [GS07] when introducing the domain specific
knowledge, we employ the ε-Greedy technique in Algorithm 2.

Note that the simulation is essentially the same as the selection and expansion but does not
build any new nodes into the tree. In the implementation a new node simulationNode

is constructed copying the expanded node and serves as a container to run the simula-
tion. The joint action saved within this node is overwritten when the simulation policy
selects new one. Agents in the simulationNode keep updating their entryHierarchy and
exitHierarchy also by overwriting the old ones. If the joint action is executable, the
execution (see Sec. 5.2.2.1) is conducted and the reward as well as the current stacks are
saved into the rewardSequence.

5.4. Backpropagation

The backpropagation (or backup) takes place after the forward search finishes. The visit
count is firstly incremented by 1 and then the action value is updated according to the
update rule.

In the application with classical simple games [BPW+12] where no immediate reward
exists, only the final result of the game (win or lose) is propagated, which can be called
outcome-based update. This operation is inappropriate in larger domains requiring deeper
search because of the overwhelmingly delayed reward for each step. Additionally, we also
want to evaluate each primitive action considering the driving comfort, energy consumption
and safety. Thus the discounted cumulative reward, or return in other words, is used in our
case. More specifically, the hierarchically bounded return (see Sec. 4.2.4) is implemented
to realize the simultaneous learning over and within the macro-actions.

5.4.1. Reward Collection

Because of the tree structure, each node has a single parent node but many child nodes.
A pointer to the parent node is saved in the child node and the parent node has an arrary
of pointers to its child nodes. Tracing the path back to the root node from the current
leaf node is very simple but descending from the root node to a certain child node is much
more complicated. This results in difficulties when calculating the hierarchically bounded
return.

This value can be relatively easily realized in the single-agent domain or the multi-agent
system with tany or tall termination schemes, where the synchronization of decisions on
macro-actions is possible. For example, [TT15, BSR16] implement the MCTS in a recursive
manner. For each invoked macro-action a nested MCTS is built. When the nested MCTS
terminates, i.e., current (macro-)action terminates, the reward, reached search depth and
state are returned so that the bounded return can be easily calculated.

In our case with the tcontinue scheme, the decisions are asynchronous so the tree search
must be built in a plain manner, i.e., four steps including selection, expansion, simulation
and backpropagation. However, this demands a boundary check on each reward after
(including itself, if applicable) the current node to determine whether it is relevant for

32 5. Implementation

overtake

left change

acceleration

right change

to desired velocity

acceleration

search depth = 0

search depth = 1

search depth = 2

r1

r2

r3

r4

search depth = 3

search depth = 4

overtake

left change

acceleration

right change

r5

r6

r7

g⇡root(s0, overtake) = �0r1 + �1r2 + �2r3 + �3r4 + �4r5 + �5r6 + �6r7

g⇡ot(s0, L) = �0r1 + �1r2 + �2r3

g⇡ot(s1, +) = �0r2 + �1r3

g⇡ot(s2, R) = �0r3

g⇡root(s3, tdv) = �0r4 + �1r5 + �2r6 + �3r7

g⇡tdv (s3, +) = �0r4

g⇡root(s4, overtake) = �0r5 + �1r6 + �2r7

g⇡ot(s4, L) = �0r5 + �1r6 + �2r7

g⇡ot(s5, +) = �0r6 + �1r7

g⇡ot(s6, R) = �0r7

search depth = 5

search depth = 6

search depth = 7

Figure 5.1.: Hierarchically Bounded Return in an iteration of depth 7

calculation of the return. Clearly, the reward value alone or the action name is not enough
for such operation. For such reason, the above mentioned rewardSequence is designed
to store the reward values as well as the two stacks of actions: entryHierarchy and
exitHierarchy. Together with the reward value, these three components are saved as an
element in rewardSequence.

5.4.2. Computation of Hierarchically Bounded Return

Based on the collected rewardSequence, the boundary check between reward r and agent’s
action a(i) is conducted based on two criteria which are illustrated with the following
example in the single agent domain:

Fig. 5.1 is an extended version based on the previous example Fig. 4.4. The search depth
reaches up to 7 with three macro-actions being chosen at depth 0, 3 and 4.

• Criterion 1: The parent actions of the agent must exist in the parent actions of the
reward.

Suppose that we are conducting the boundary check between the reward r4 and the
agent’s decision on choosing overtake at state s0 (in red). The entryHierarchy of
r4 is root, to desired velocity and acceleration in order from bottom to top of the
stack. The first two macro-actions are called as the parent actions of the primitive
action acceleration. The agent’s entryHierarchy consists of root which is the only
parent action. Clearly this criterion is fulfilled. The implementation is realized by
comparing the name of the each parent action.

• Criterion 2: The parent actions of the agent and parent actions of the reward must
come from the same invoke.

5.5. Final Selection and Execution 33

Take the agent at search depth 1 (in blue) and the reward r5 as an example. The
parent actions of agent and reward are the same: root and overtake. However, the
reward r5 cannot be considered into the return of choosing left change under policy
πot at state s0 because the overtake of the agent is not the same one of the reward
r5. As a result, r5 is not added to the calculation of gπot(s0, L).

The implementation is realized by comparing the terminated actions staring from the
node till this currently being checked reward. More specifically, another stack ter-

minatedHierarchy representing the terminated (macro-)actions is firstly determined
by substracting exitHierarchy from entryHierarchy. Then the terminatedHier-

archy of each reward from this node to the target node (r5) is examined to find if
the parent action of the agent (overtake in this example) exists. If so, it means that
the parent action has already terminated before reaching the target node and the
reward r5 from the target node is not relevant anymore.

These two criteria necessarily and sufficiently determine whether a future reward is relevant
for the return of the current action. Besides, the exponent of the discout factor γ is
determined by the difference of two search depths. For each subnode the difference should
be reduced by 1 since no time elapsed at the subnode. The update of the action value is
according to Eq. 4.12.

The above four sections depict how an iteration is done. These operations repeat many
times to build an asymmetric forward search tree. This process can be terminated at any
time as long as the predefined conditions are met. The following section shows how an
action is chosen from the tree and executed.

5.5. Final Selection and Execution

Because we have built a tree in the decentralized way, the final selection should be also
decentralized, which means that the formed joint action could be an untried one. However,
such situation rarely occurs. It should be mentioned that the centralized final selection
means that the agent selects the joint action which leads to the child node with highest
action value Qπ

(i)
(s,a) or visit count N(s,a), while the decentralized selection is based

on the agents own track of the action value Qπ
(i)

(s, a) or visit count N(s, a) (see Sec.
4.1.4). Obviously the centralized selection requires that other agents must choose the
same joint action so that cooperation could be realized. [LR00] theoretically prove that
the decentralized learning converges to the global optimum under the homogeneous agents
settings as the centralized learning does. However, since the other agents do not always
behave like the agent has assumed, the decentralized final selection is implemented for the
sake of robustness.

As stated in Sec. 2.2.3 three possible selection policies are available: highest action value
(max child), highest visit count (robust child) and highest UCT value (UCT child). In
the evaluation we find that the former two usually produce the same results, which is
also reasonable. The selection according to the highest visit count is also experimentally
proven to have the best robustness in Sec. 6.3.3. The final selection based on robust child
is described in Alg. 3. Due to the existence of macro-actions, the decentralized selection

34 5. Implementation

needs to be repeated until a primitive action is selected.

Algorithm 3: FinalSelection

Data: n0: root node, υ: ID of the ego agent
Result: aυ: action of ego agent
joint action a← ∅
do

for i← 1 to |Υ| do
a(i) ← argmaxa(i)N(s, a(i))

a← [a, a(i)]

n←LookUp(n,a)

while n 6= ∅ and a is not executable
return a[υ]

It should be mentioned that the selected primitive action belongs to a certain macro-
action. When starting a new tree search, such information can be maintained in the new
tree search or discarded, which is respectively called hierarchical mode and polling mode
(see Sec. 4.2). [SPS99] showed that the polling mode which starts a new planning cycle
without any memory about the previous step provides better results because the polling
mode allows the premature termination of macro-actions at each step and is thus more
flexible. We adopt the polling control mode for the execution.

Moreover, the selection can be further executed and a sequence of planned actions can be
extracted. The repeated selection terminates when the selected action is not reliable, for
example, having insufficient visit count. We name this procedure the ExtractActionSe-

quence and describe it as follows Alg. 4. The extracted plan can be used to examine the
depth of effective search and how the learned macro-actions look like. The corresponding
evaluation is conducted in Sec. 6.3.1

Algorithm 4: ExtractActionSequence

Data: n0: root node; C: minimal required visit count
Result: ~A: action sequence
action sequence ~A← ∅
joint action a← ∅
do

for i← 1 to |Υ| do
a(i) ← argmaxa(i)N(s, a(i))

a← [a, a(i)]

if a is executable then
~A← [~A,a]

n←LookUp(n,a)

while N(n) ≥ C
return ~A

To sum up, this chapter shows the implementation details about the concepts in Chapter
4. The ε-greedy technique is introduced to ensure the exploration in the selection phase
and combine the prior knowledge during the simulation. To calculate the hierarchically
bounded return in the multi-agent system with tcontinue termination scheme of macro-
actions, the rewards together with the corresponding stacks of actions are stored externally
and the boundary check is conducted. After building the tree, the best action is selected
in a similar decentralized manner and the polling control mode is adopted to execute the
action.

6. Evaluation

In this chapter, the performance of the proposed DecH-MCTS algorithm is demonstrated
based on the comparison with the classical MCTS. All test scenarios are firstly described,
such as simple free drive, bottleneck, overtaking, etc. In each scenario two types of envi-
ronments are available: homogeneous and heterogeneous. The homogeneous environment
requires that all agents are equipped with the same planning algorithm with the same pa-
rameters. Consequently, there exists no difference between each agent’s assumption about
others. On the contrary, other agents in the heterogeneous environment can behave dif-
ferently from what the ego agent assumes. The difference between assumption and reality
is used to test the robustness of our algorithm.

We firstly demonstrate the general applicability of DecH-MCTS by finding a universal
parameter setting. After that we conducted repeated experiments with different random
seeds to compare the learning ability of DecH-MCTS and classical MCTS in terms of
convergence speed and success rate. Lastly, the robustness of our proposed method is
examined in a heterogeneous environment.

6.1. Test Scenarios

This section describe all used test scenarios for the evaluation of our algorithm. Note that
the figures do not necessarily represent the precise coordinates of each vehicles but only
relative positions are depicted. The initial states (position and velocity) are given in each
specific experiment.

6.1.1. Free Drive

The free drive in Fig. 6.1 is the simplest scenario and is used to preliminarily validate
the algorithm. Only one vehicle is driving on the middle lane of an endless straight road
with a certain initial velocity. Different desired velocity and lane can be set to check if the
algorithm behaves rationally.

6.1.2. Merge

The scenario merge is a typical conflict scenario which requires cooperation among the
participating vehicles. We set this scenario on a three-lane straight road with the rightmost
lane being blocked by a static vehicle shown in Fig. 6.2.

36 6. Evaluation

Figure 6.1.: Scenario: Free Drive with one vehicle

Figure 6.2.: Scenario: Merge; the green vehicle blocks one lane

6.1.3. Double Merge

The scenario double merge also requires cooperation among the participants, as Fig. 6.3
shows. The green vehicles block the leftmost and the rightmost lanes. Both the blue and
red vehicles need to merge to the middle lane and pass the static vehicles.

6.1.4. Overtaking

The scenario overtaking is considered to validate the simultaneous convergence of the
hierarchical policies in the DecH-MCTS algorithm and compare the performance between
DecH-MCTS and the classical MCTS. Two variants are designed: overtaking between 2
vehicles and overtaking between 3 vehicles.

Fig. 6.4 depicts the simpler variant with 2 vehicles. The blue vehicle drives faster than
the red one and needs to overtake. In the overtaking between 3 vehicles (Fig. 6.5), totally
three vehicles are driving on the rightmost lane: vehicle 0 in blue has the highest velocity
and needs to overtake both of the two front vehicles, vehicle 1 drives slower than vehicle
0 but faster than vehicle 2 (in red).

6.1.5. Bottleneck

The scenario bottleneck is another typical conflict scenario which usually happens in resi-
dential areas. As Fig. 6.6 shows, there are three participants on a narrow road with one
lane in each direction. Vehicle 0 (blue) approaches from the left and vehicle 1 (red) comes
from the right at different velocities. Vehicle 2 (green) blocks the lane of vehicle 0.

Figure 6.3.: Scenario: Double Merge; the green vehicles block two lanes

6.2. General Applicability 37

v0 v1>

Figure 6.4.: Scenario: Overtaking between 2 vehicles

v0 v1> v2>

Figure 6.5.: Scenario: Overtaking between 3 vehicles

6.1.6. Open Loop

The scenario open loop is to test the performance under complex heterogeneous traffic.
As explained before, only the ego agent in such environment is equipped with our plan-
ning algorithm, while others are controlled by SUMO, an open source traffic simulation
developed by the DLR [KEBB12]. The vehicles in SUMO are set to move according to
the IDM-Model. while the modeling in the algorithm of the ego agent can be different in
terms of cooperation factor, reward functions, desired states, action space, etc. Fig. 6.18
shows an example situation during the testing.

6.2. General Applicability

We refer the general applicability to solving different scenarios with a universal parameter
setting. Considering our original purpose of implementing the macro-action to achieve
deeper search and accelerate the learning process, the number of iterations and search
depth is the focus of our evaluation and can be varied with scenarios. All others should
keep invariant in different scenarios, such as parameters in the reward function, UCT
calculation, etc. Initial settings in each scenarios are listed in A.2.

Table A.1 in the appendix lists the tuning result. It should be mentioned that the optimal-
ity of these parameters is not guaranteed. On the one hand, finding the optimal parameter
settings is impractical considering the amount of parameters and the varied scenarios. On
the other hand, it is not necessary since our evaluation focuses on the flexibility, conver-
gence and robustness. The parameter tuning is conducted to find the parameter values
which make the algorithm work reasonably but not necessarily optimally.

Figure 6.6.: Scenario: Bottleneck; the green vehicle blocks one lane

38 6. Evaluation

Figure 6.7.: Scenario: Open Loop with heterogeneous environment

Solutions of all scenarios are listed in A.3. It can be seen that our algorithm generates ra-
tional plans for all conflict scenarios as human would do. We choose the scenario bottleneck
as an example for analysis, as Fig. 6.8 shows.

The upper graph shows 2D trajectories of both agents/vehicles. Color of points represents
time according to the color bar on the right side. The black rectangle in the at x = 1000 m
on lane 0 is the static obstacle vehicle (agent 2). Between two black points is one planning
cycle. We also visualize the whole plan sequence at each time step (see Sec. 5.5) with gray
points. Changes of lateral and longitudinal velocity can be found in the lower four graphs.
It can be seen that agent 0 firstly decelerates and then accelerates. These two agents meet
at around t = 8.2 s, x = 980 m. At t = 8s agent 0 changes to the left and then changes to
right again to avoid collision with the obstacle.

6.3. Performance Analysis

Recall the original purposes of integrating macro-actions into MCTS, we propose the
following three goals and uses different scenarios to conduct the experiment and analysis.

• flexible learning of macro-actions

• faster learning than the classical MCTS

• ability to generate robust solutions in the heterogeneous environment

6.3.1. Flexible Learning of Macro-Actions

The scenario overtaking between 3 vehicles is considered to test the algorithm’s ability to
learn the execution of the macro-action overtake flexibly. The scenario is shown in Fig.
6.5 and the initial conditions are shown in Table 6.1.

Table 6.1.: Initial Condition for Scenario Overtaking between 3 vehicles

ID color xini [m] vini [m/s] lini vd [m/s] ld

0 blue 5 15 0 30 0
1 green 25 15 0 25 0
2 red 45 15 0 15 0

Agent 0 is defined as ego agent. The desired velocities and lanes of the other two agents
are assumed to be known. All three vehicles are controlled by their own DecH-MCTS
algorithm with the same parameter settings according to Table A.1 and λ(i) = 1. The
number of iterations is set to 2,000 and the maximal search depth to 20.

As mentioned in Sec. 5.5, the final selection can be repeated and a sequence of planned
actions can be extracted. We extract the plan using algorithm 4 after the planning cycle

6.3. Performance Analysis 39

900 950 1000 1050 1100

x [m]

0

1

2

3

4

5

6

7

y
[m

]

Vehicle Movement x-y-t
agent: 0 agent: 1

0

2

4

6

8

10

12

ti
m

e
[s

]

OT MR TDV
Action Class

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

0 + L -
Action Class

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

Evaluation:
/home/zhoucy/.ros/

(a)2D Trajectory

0 2 4 6 8 10 12

time [s]

900

925

950

975

1000

1025

1050

1075

1100

x
[m

]

longitudinal vehicle movement

agent: 0

agent: 1

0 2 4 6 8 10 12

time [s]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

y
[m

]

lateral vehicle movement

agent: 0

agent: 1

0 2 4 6 8 10 12

time [s]

−15

−10

−5

0

5

10

15

v x
[m

/s
]

vx vs. time

agent: 0

velocity desired agent # 0

agent: 1

velocity desired agent # 1

0 2 4 6 8 10 12

time [s]

−3

−2

−1

0

1

2

3

v y
[m

/s
]

vy vs. time

agent: 0

agent: 1

(b)Details

Figure 6.8.: Solution for scenario: Bottleneck

40 6. Evaluation

Table 6.2.: Planned action sequence at t = 0

Most Visited Action
Depth

agent 0 agent 1 agent 2

overtake overtake make room
0

L L 0

make room
1

L + 0

make room
2

+ + 0

make room
3

+ + 0

make room
4

+ R 0

at the beginning. The terminal condition C is set as 1
100 of total iterations, i.e., 20. The

extracted action sequence is shown in 6.2.

To avoid ambiguity, the wait operations (see Sec. 5.2.2.1) of agent 0 and 1 at depth 1-4 are
not shown. It can be seen that the effective search depth reaches to 4, indicating a plan for
the future 10 s. Additionally, agent 0 learns the macro-action overtake differently from the
agent 1: agent 0 needs to make two left changes till the leftmost lane and then accelerate
to get in front of other 2 vehicles; what the agent 1 has learned about the execution of
overtake contains only one lane change to the left, acceleration and then one lane change
to the right.

Since all agents are modeled as homogeneous, the other two agents produce the same
result. In the polling control mode, each agent executes the planned action, i.e., L, L, 0
respectively, and then starts a new plan without memorizing previous result. The state at
t = 2s is shown in Table 6.3

Table 6.3.: State after the first step (actions L, L, 0 are respectively executed)

ID color x [m] v [m/s] lane vd [m/s] ld

0 blue 35 15 1 30 0
1 green 55 15 1 25 0
2 red 75 15 0 15 0

The new planning cycle starting at t = 2 s produces the following result in Table 6.4. The
overtake is newly learned at current state and the agents 0 and 1 have different learning
results.

We run the algorithm repeatedly with the polling mode until the conflict scenario is solved.
Fig. 6.9 shows the 2D trajectories of each agent, where the color of the data points
represents the time according to the color bar on the right side. Between two black points
is one planning step of 2 seconds. It can be seen that agent 1 changes to the left after
driving in front of agent 2, while agent 0 stays at lane 2 until it gets in front of both two
vehicles and then makes two lane changes to the desired lane 0.

6.3. Performance Analysis 41

Table 6.4.: Planned action sequence at t = 2 s

Most Visited Action
Depth

agent 0 agent 1 agent 2

overtake overtake make room
0

L + 0

make room
1 − 0 0

make room
2

+ 0 0

6.3.2. Faster Learning than Classical MCTS

The learning speed refers to the algorithm’s performance at a certain number of iterations.
Faster learning means lower requirement on the number of iterations to achieve the same
performance.

Note that we do not use the computation time for evaluation because it varies with hard-
ware. Appendix A.4 presents the variation of average computation time of one stage in
different scenarios with different total iterations and maximal search depth (see Table
6.5). It can be seen that DecH-MCTS outperforms classical MCTS in terms of average
computation time.

6.3.2.1. Performance Measure

Considering our application, three performance metrics are defined as follows:

• collision rate CR

• success rate SR

• undiscounted return G

Success rate specifies how often the conflict scenarios are solved within the given steps.
Note that it does not equal 1− collision rate. The third measure is the undiscounted sum
of ego agent’s reward at each step. We calculate the reward with the same parameters
adopted in building the search tree.

We combine these three measures into one called utility U according to Eq. 6.1

U = Guncollided + CR · rcollision + SR · rsuccess, (6.1)

where Guncollided is the mean of undiscounted return of uncollided experiments. With
the reward parameter settings based on A.1, Guncollided lies usually between −20 and
20. rcollision is not necessarily the same as that in the reward function but should have
larger absolute value than Guncollided. Both rcollision and rsuccess are used to combine the
above mentioned three measures and distinguish the successful/collided solutions from the
short-sighted ones (see Sec. 6.3.2.3).

6.3.2.2. Independent Variables

There are three independent variables: scenarios, number of iterations and maximal search
depth. The scenarios should be long enough, in other words, require enough many steps
to solve the conflicts. Note that the maximal search depth refers to the possible maximal

42 6. Evaluation

50 100 150 200 250 300 350

x [m]

0

2

4

6

8

10
y

[m
]

vehicle movement x-y-t

agent: 0

agent: 1

agent: 2

0

2

4

6

8

10

12

14

16

ti
m

e
[s

]

Figure 6.9.: 2D trajectories of each agent in scenario overtaking between 3 Vehicles. Dif-
ferent point types represent agents. Color of the points determines time ac-
cording to the color bar. Agent 0 makes two left change to overtake the front
two vehicles while agent 1 only changes once.

Table 6.5.: Independent variables and their values in the analysis of learning speed

variables values

scenarios free drive, merge, double merge, overtaking (2/3 vehicles), bot-
tleneck

number of iterations 10, 20, 40, 60, 80, 100, 200, 400, 800, 1000, 2000, 6000
maximal search depth 5, 10, 15, 20, 30

search depth in one iteration including selection and simulation but the finally built tree
doesn’t necessarily reaches to this depth. Their values are shown in Table 6.5. Initial
settings in each scenario can be found in A.2. For each configuration, we run the algorithm
15 times with varied random seeds.

6.3.2.3. Result Analysis

The results of all scenarios are listed in Fig. 6.10 to Fig. 6.14 with left column representing
classical MCTS and right DecH-MCTS. rcollision and rsuccess are set as −100 and 100
respectively. Each data point has an error bar consisting of the upper and lower quartiles.

Generally speaking, classical MCTS and DecH-MCTS converges to an equilibrium after
about 300 iterations in all scenarios. Both variants can generate solutions of same quality
in simple scenarios, such as free drive and merge, and the former performs better when the
iterations are very small (10 - 20). However, classical MCTS fails in complex scenaios, as
we can see that DecH-MCTS converges to a better equilibrium as the number of iterations
increases (> 100).

The reason is that too small amount of iterations results in ineffective learning of macro-
actions in DecH-MCTS, while classical MCTS can find a relatively safer but not optimal

6.3. Performance Analysis 43

101 102 103

Iterations

−100

−50

0

50

100

150

U
ti

lit
y

Classical MCTS
Scene: Free Drive

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

−100

−50

0

50

100

150

U
ti

lit
y

DecH-MCTS
Scene: Free Drive

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure 6.10.: Comparison of utility in scenario Free Drive

101 102 103

Iterations

−150

−100

−50

0

50

100

150

U
ti

lit
y

Classical MCTS
Scene: MergeInLight

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

−150

−100

−50

0

50

100

150

U
ti

lit
y

DecH-MCTS WITH Prior Knowledge
Scene: MergeInLight

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure 6.11.: Comparison of utility in scenario Merge

101 102 103

Iterations

−100

−50

0

50

100

150

U
ti

lit
y

Classical MCTS
Scene: DoubleMerge

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

−100

−50

0

50

100

150

U
ti

lit
y

DecH-MCTS
Scene: DoubleMerge

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure 6.12.: Comparison of utility in scenario Double Merge

44 6. Evaluation

101 102 103

Iterations

−100

−50

0

50

100

150

U
ti

lit
y

Classical MCTS
Scene: overtake in 2 vehicles

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

−100

−50

0

50

100

150

U
ti

lit
y

DecH-MCTS
Scene: overtake in 2 vehicles

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(a)Comparison of utility in scenario Overtaking between 2 Vehicles

101 102 103

Iterations

−100

−50

0

50

100

150

U
ti

lit
y

Classical MCTS
Scene: overtake in 3 vehicles

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

−100

−50

0

50

100

150

U
ti

lit
y

DecH-MCTS
Scene: overtake in 3 vehicles

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(b)Comparison of utility in scenario Overtaking between 3 Vehicles

Figure 6.13.: Comparison of utility in scenario Overtaking between 2/3 Vehicles

101 102 103

Iterations

−150

−100

−50

0

50

100

150

U
ti

lit
y

Classical MCTS
Scene: BottleNeck

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

−150

−100

−50

0

50

100

150

U
ti

lit
y

DecH-MCTS WITH Prior Knowledge
Scene: BottleNeck

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure 6.14.: Comparison of utility in scenario Bottleneck

6.3. Performance Analysis 45

action as long as the agent has explored all available actions (only five primitive actions).
As more iterations are available, agents benefit from learning macro-actions and build a
deeper search tree. By checking the generated solutions by classical MCTS, we find that
classical MCTS tends to generate ”safer” maneuvers, such as deceleration, do nothing. In
the double merge scenario, vehicles even stop to keep large enough distance to others. Con-
sidering that the number of iterations usually lies around 1000, DecH-MCTS outperforms
classical MCTS in practice.

In both overtaking scenarios, The most front vehicle controlled by classical MCTS firstly
accelerates to make enough room for the behind vehicles’ acceleration. The faster agents
keep staying behind the slower one. The reason is that the random selection among all
available actions in the simulation phase of classical MCTS results in bad evaluation of
those actions which reduce the distance between vehicles and are more likely to cause
collisions, while the available actions in DecH-MCTS are restricted to the child actions
of parent actions. Additionally, the utility curves of DecH-MCTS in both overtaking
scenarios shows that restricting the maximal search depth yields negative influence on the
optimality because the macro-actions are too often interrupted when reaching the maximal
search depth and the learning process is negatively influenced.

Moreover, in scenario double merge we can see that increasing the maximal search depth
leads poorer performance of classical MCTS but the optimality of DecH-MCTS is not
significantly influenced at larger maximal search depth. The reason is that classical MCTS
does not have any domain specific knowledge and conducts the simulation phase totally
randomly. Larger max. search depth means that the random simulation needs to run for
more steps and very likely ends with collision. As a result, almost all actions are evaluated
to be very bad since the simulation always returns a collision. It becomes difficult for the
agent to distinguish the value of each action, thus resulting in solutions with lower quality.

6.3.3. Robustness

Considering the assumptions on homogeneous agents that we made when building the
search tree, it is necessary to test if our algorithm can also produce feasible plans in
the heterogeneous environment. This section demonstrates the performance of the DecH-
MCTS algorithm for the scenarios bottleneck and open loop with heterogeneous agents.

6.3.3.1. Test Environment

To introduce heterogeneous agents, SUMO, an open source traffic simulation software
developed by the DLR [KEBB12], is adopted. A screenshot of the SUMO gui is given in
Fig. 6.15.

SUMO provides a C++ based interface named TraCI so that the target vehicle(s) can be
controlled by extern applications. To realize the communication between our algorithm
and SUMO, we build two ROS nodes, one for our planning algorithm, the other serves as
interface which uses functions of TraCI, and uses the publish and subscribe functions to
exchange the necessary messages. The information flow is visualized in Fig. 6.16.

Before the planning algorithm starts, the current state of the vehicles and the road informa-
tion are sent by the node SUMO interface. The subscriber in the node DecH-MCTS receives
the information and updates the current state. The planning is then executed based on
the updated state and the best action is chosen. Corresponding trajectory is generated
and sent to SUMO interface. With the help of the functions MoveToXY of TraCI, the
target vehicle in SUMO moves according to the given trajectory. After execution, the
environment is updated again and a new planning cycle starts.

46 6. Evaluation

Figure 6.15.: Screenshot of SUMO-GUI

ROS node: Dec-HMCTS

Main

Class: SubAndPub

Subscribe: road, vehicles

Publish: trajectory (group)

Update

Update Road

Update Vehicles

Planner

ROS Node: SUMO interface

Subscribe: trajectory (group)

Publish: road, vehicles

TraCI Client

Connection MoveToXY

Get Vehicles and Road

SUMO

Figure 6.16.: Information Exchange between the planning algorithm and SUMO with the
help of ROS-nodes

6.3. Performance Analysis 47

6.3.3.2. Adjustment in DecH-MCTS

In the practice we find that our algorithm tends to generate behaviors which are heavily
dependent on others’ cooperation, even if the cooperation factor λ of other agents is
set to 0. As a result, collision often happens because other agents do not provide the
expected cooperation. Through multiple experiments we find that the collision rate can
be significantly reduced if we limit the action space of other agents when we build the tree.
More specifically, the assumed action space of other agents is constrained to be the make
room alone, which means that the ego agent assumes that other agents do not make any
lane changes. By observing the behaviors of the vehicles controlled by SUMO (SUMO-
vehicles), we find the reason for this improvement: the SUMO-vehicles seldom change lane
to another one and prefer acceleration or deceleration to avoid the collisions with others.
Consequently, if we assume that other agents’ action space is limited to make room during
the planning, the difference between the assumption and the reality is reduced so that the
collision rate can be reduced.

In the following experiment, we preserve such adjustments on the modeling of other agents,
i.e., assuming that others only keep its lane. Besides, the desired velocity of other agents
vd is set as current velocity and λ of them are all set as 0.

6.3.3.3. Uncooperative Bottleneck

The scenario Uncooperative Bottleneck is designed to test if the algorithm is robust enough
when other agents do not behave as the algorithm assumes (see Sec. 4.1.2.2). As Fig. 6.6
shows, agent 0 in blue comes from the left at 10m/s and is controlled by our algorithm,
agent 1 in red comes from the right at different velocity ranging from 5m/s to 19m/s. Its
behavior is predefined to keep constant velocity (do nothing). But the ego agent doesn’t
have this information. Besides, agent 2 in green stays static and blocks the lane of agent
0.

Fig. 6.17 shows the trajectories of three vehicles under each settings. When agent 1 drives
at a slow speed, agent 0 chooses to drive faster to pass the bottleneck firstly. When agent 1
drives very fast, the agent 0 changes its plan according to the current situation and finally
passes the bottleneck after agent 1. This shows that our algorithm is able to generate
robust solutions in heterogeneous environment.

6.3.3.4. Open Loop Test

Driving in the open loop is another test of the robustness. The parameter setting is
according to A.1. The ego agent (in blue) starts on lane 0 at 22m/s and has vd of 40m/s,
ld of 1. The desired velocity and desired lane of other agents vd are both set as current
value. Their λ are all set as 0. Four screenshots are shown in Fig. 6.18. The ego
vehicle demonstrates rational behaviors, such as approaching the front vehicle to overtake,
acceleration over the desired velocity to finish the overtaking maneuver, merging to the
desired lane while keeping a safe distance with other vehicles, etc. Qualitative analysis
shows that DecH-MCTS is able to generate feasible plans under heterogeneous environment
where other agents do not always behave like the ego agent assumes.

To sum up, this section systematically evaluates the performance of our proposed algo-
rithm DecH-MCTS in the cooperative automated driving problem. Experiments show
that DecH-MCTS can solve multiple conflict scenarios without changing the parameter
settings. Based on the hierarchically bounded return, the agent can flexibly learn the
execution of macro-actions and how to choose one. The comparison with the classical
MCTS shows that DecH-MCTS converges much faster than the classical MCTS and can
find better equilibrium than classical MCTS. With modifications in the modeling of other
agents our algorithm demonstrates good robustness under the heterogeneous environment.

48 6. Evaluation

x [m]
92595097510001025105010751100y [m]

0
1

2
3

4
5

6

t [sec]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

x y vehicle movement at v2 = 5m/s

x [m]
92595097510001025105010751100

y [m]
0

1
2

3
4

5
6

t [sec]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

x y vehicle movement at v2 = 9m/s

(a)Blue vehicle passes before the slow red one

x [m]
9009259509751000102510501075

y [m] 0123456

t [sec]
0
2
4
6
8

10
12
14
16

x y vehicle movement at v2 = 13m/s

x [m]
850

900
950

1000
1050

y [m] 0123456

t [sec]

0
2
4
6
8

10
12
14

x y vehicle movement at v2 = 17m/s

(b)Blue vehicle slows down and passes after the fast red one

Figure 6.17.: Analysis of robustness of DecH-MCTS in the scenario uncooperative
bottleneck

6.3. Performance Analysis 49

(a) Ego agent merges to the desired lane. (b) Ego agent changes to left to overtake
the front vehicle.

(c) Ego agent finishes overtaking and
merges to the desired lane.

(d) Ego agent is approaching the front
vehicle

Figure 6.18.: Screenshots from the Open Loop Test

7. Conclusion and Future Work

7.1. Conclusion

In this thesis, we propose a decentralized planning method with macro-actions based on
MCTS to generate cooperative maneuvers with longer time horizons. Inspired by the hier-
archical reinforcement learning framework MAXQ, we firstly propose four macro-actions:
overtake, merge in, make room and to desired velocity based on real scenarios and design
them as a hierarhical action graph. In order to realize the flexible design of macro-actions
instead of filling them with if-else control sequences, we intensively study hierarchical
reinforcement learning methods and propose the notion of hierarhically bounded return,
which is described in detail using the example of MCTS with single agent. To extend to
the decentralized multi-agent system, we adopt the tcontinue termination scheme for macro-
actions to ensure asynchronous decision making and develop a hierarchical boundary check
to realize the association and the calculation of the bounded return. Besides, the idea of
observational reinforcement is adopted to incorporate the estimated others’ reward into
the local reward so that the agent can behave cooperatively.

The DecH-MCTS algorithm realizes simultaneously learning of the policies within and
over macro-actions in a decentralized multi-agent system. The test scenario overtaking
between 3 vehicles shows that two types of overtake are learned together with the policy
of how to choose one macro-action. Our algorithm also demonstrates great generalization
ability considering it can solve multiple conflict scenarios without changing the parame-
ters. The comparison between classical MCTS and DecH-MCTS shows that DecH-MCTS
outperforms classical MCTS in terms of convergence speed and planning quality. The
robustness is evaluated in the test scenario uncooperative bottleneck and the open loop
test with the help of SUMO. By introducing small modifications on the assumed action
space and cooperation factor of other agents, our algorithm demonstrates robustness in
heterogeneous environments.

7.2. Future Work

The DecH-MCTS algorithm shows promising result in achieving a faster and longer plan
than the classical MCTS; however, some challenges still need to be investigated in the
future.

It is strongly suggested to abandon the assumption of perfect perception in the further
development. Instead, Partially Observable MDP (POMDP) should be employed so that

52 7. Conclusion and Future Work

the estimation of other agents and planning of own actions can be systematically combined.
This would also be helpful in the improvement of robustness since the uncertainty about
others’ state is explicitly modeled.

Besides, the learning and planning are still based on the exact position and speed values.
Each agent needs to record the action values in a table. It is difficult to reuse the already
learned macro-actions to accelerate the further search. To the author’s best knowledge
there exist two possibilities to address such problem: value function approximation and
state abstraction. The former approximates the value function with a formula based on
the feature vector, which is very useful when the state space is huge. The latter has the
similar idea with the temporal abstraction and abstracts the state to a higher level. For
example, [KBSZ14] proposed a planning method based on the semantic state space based
on the spatial relation of two vehicles. It would be a very good practice to combine the
state abstraction and the temporal abstraction as [BSR16] did.

Finally, the problem of the strongly discretized action space should be addressed. MCTS
variants for continuous planning can be incorporated into this algorithm and further im-
prove the flexibility of the learned macro-actions.

A. Appendix

A.1. Parameter Settings

Table A.1.: Values of the basic parameters

symbol usage value

tsim [s] step length of one planning cycle, also the duration of primitive
actions

2.0

∆ẋ+
[m/s]

longitudinal velocity change of primitive action acceleration + +4.0

∆ẋ−
[m/s]

longitudinal velocity change of primitive action deceleration - -4.0

ws weight on the longitudinal acceleration -0.5

wd weight on the lane change -7.0

wv weight on the velocity deviation to the desired velocity +4.0

wl weight on the lane deviation to the desired lane +20.0

rcollision penalty when the vehicle collides with other vehicle(s) -1000

rinvalid penalty when the vehicle drives out of road -1000

γ discount factor when calculating the potential based shaping term
and the return

0.98

ε balance between the prior knowledge and random exploration 0.3

Cp weight on the exploration term in the UCT calculation
√

2

The tuning process is based on the scenarios free drive, overtaking between 2 and 3 vehicles,
bottleneck and merge. Some domain specific knowledge can be useful to avoid unnecessary
experiments. Here the four fundamental aspects are listed.

• action towards the desired state should be rewarded positively.

When the vehicle is slower than its desired velocity, the acceleration should intuitively

be the best action. The local reward r
(i)
local of acceleration must be positive so that

the agent can have a higher evaluation on it instead of choosing do nothing. As a

result the relation between ws and wv should be maintained so that r
(i)
local > 0 under

such situation holds. The same idea also applies in the relation between wd and
wlane, where changing to the desired lane should be rewarded positively.

54 A. Appendix

• the action cost for one time lane change is modeled as more expensive than one time
acceleration.

• the collision and invalidity penalty should lie within a certain range.

The collision and invalidity penalty should be large enough to avoid dangerous be-
havior but also not too large, otherwise the backpropagated penalty would dominate
the update Eq. 4.12 and cause that all actions are evaluated similarly bad.

• Too short planning cycle time tsim is impossible for the lane change and also not
enough for generating a feasible plan. Too long cycle time would cause the vehicle
cannot react to changes in the environment soon enough.

A.2. Scenario Descriptions

The initial position and velocity as well as the desires of each scenario are listed in the
following tables A.2, A.3, A.4, A.5, A.6 and A.7.

Table A.2.: Free Drive

ID xini [m] vini [m/s] lini vd [m/s] ld

0 5 4 1 28 2

Table A.3.: Overtaking between 2 vehicles

ID xini [m] vini [m/s] lini vd [m/s] ld

0 5 15 0 25 0
1 25 15 0 15 0

Table A.4.: Overtaking between 3 vehicles

ID xini [m] vini [m/s] lini vd [m/s] ld

0 5 15 0 30 0
1 25 15 0 25 0
2 45 15 0 15 0

Table A.5.: Merge

ID xini [m] vini [m/s] lini vd [m/s] ld

0 5 25 0 25 1
1 5 25 1 25 1
2 100 0 0 0 0

Table A.6.: Double Merge

ID xini [m] vini [m/s] lini vd [m/s] ld

0 5 15 0 15 1
1 5 15 2 15 1
2 100 0 0 0 0
3 100 0 1 0 1
4 105 0 0 0 0
5 105 0 1 0 1

A.3. Solutions found by DecH-MCTS 55

Table A.7.: Bottleneck

ID xini [m] vini [m/s] lini vd [m/s] ld

0 905 10 0 15 0
1 1095 −15 1 −15 1
2 1000 0 0 0 0

A.3. Solutions found by DecH-MCTS

Here the solutions of all scenarios except the bottleneck (see 6.2) are listed in Fig. A.1,
A.4, A.5, A.2 and A.3.

A.4. Computation Time

The evaluation is done on a virtual machine of Ubuntu 14.04 on a laptop Intel(R) Core(TM)
i7 CPU at 2.6 GHz. The average computation time of one stage in different scenarios with
different total iterations and maximal search depth (see Table 6.5) are listed in Figures
A.6, A.7, A.8, A.9, A.10 and A.11. Each data point is the mean value of 15 repetitions
and has an error bar consisting of the upper and lower quartiles.

A.5. Original Simulation Result in the Evaluation of Learn-
ing Speed

The collision rates and success rates for each scenario are listed and compared in Fig.
A.12, A.15, A.16, A.14, A.13 and A.17.

56 A. Appendix

−50 0 50 100 150 200 250

x [m]

0

2

4

6

8

10

y
[m

]

Vehicle Movement x-y-t
agent: 0 desired agent: 0

0

2

4

6

8

10

12

14

ti
m

e
[s

]

MR MI TDV
Action Class

0

10

20

30

40

50

60

70

Q
-V

al
u

es

Agent #: 0 , stage: 0

+
Action Class

0

10

20

30

40

50

60

Q
-V

al
u

es
Agent #: 0 , stage: 0

Evaluation:
/home/zhoucy/.ros/

(a)2D Trajectory

0 2 4 6 8 10 12 14

time [s]

0

50

100

150

200

x
[m

]

longitudinal vehicle movement

agent: 0

0 2 4 6 8 10 12 14

time [s]

5.5

6.0

6.5

7.0

7.5

8.0

8.5

y
[m

]

lateral vehicle movement

agent: 0

0 2 4 6 8 10 12 14

time [s]

5

10

15

20

25

v x
[m

/s
]

vx vs. time

agent: 0

velocity desired agent # 0

0 2 4 6 8 10 12 14

time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v y
[m

/s
]

vy vs. time

agent: 0

(b)Details

Figure A.1.: Solution for Scenario: Free Drive

A.5. Original Simulation Result in the Evaluation of Learning Speed 57

0 50 100 150 200

x [m]

0

2

4

6

y
[m

]

Vehicle Movement x-y-t

agent: 0 desired

agent: 1 desired

agent: 0

agent: 1

0

1

2

3

4

5

6

ti
m

e
[s

]

OT MR MI
Action Class

−2000

−1500

−1000

−500

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

0 + - L
Action Class

−2000

−1750

−1500

−1250

−1000

−750

−500

−250

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

Evaluation:
/home/czhou/.ros/

(a)2D Trajectory

0 1 2 3 4 5 6

time [s]

0

20

40

60

80

100

120

140

160

x
[m

]

longitudinal vehicle movement

agent: 0

agent: 1

0 1 2 3 4 5 6

time [s]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

y
[m

]

lateral vehicle movement

agent: 0

agent: 1

0 1 2 3 4 5 6

time [s]

21

22

23

24

25

26

27

28

29

v x
[m

/s
]

vx vs. time

agent: 0

velocity desired agent # 0

agent: 1

velocity desired agent # 1

0 1 2 3 4 5 6

time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v y
[m

/s
]

vy vs. time

agent: 0

agent: 1

(b)Details

Figure A.2.: Solution for Scenario: Merge

58 A. Appendix

0 50 100 150

x [m]

0

2

4

6

8

10

y
[m

]

Vehicle Movement x-y-t

agent: 0 desired

agent: 1 desired

agent: 0

agent: 1

0

1

2

3

4

5

6

7

8

ti
m

e
[s

]

OT MR MI
Action Class

−2000

−1500

−1000

−500

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

- L + 0
Action Class

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

Evaluation:
/home/zhoucy/.ros/

(a)2D Trajectory

0 1 2 3 4 5 6 7 8

time [s]

0

20

40

60

80

100

120

140

x
[m

]

longitudinal vehicle movement

agent: 0

agent: 1

0 1 2 3 4 5 6 7 8

time [s]

2

3

4

5

6

7

8

9

y
[m

]

lateral vehicle movement

agent: 0

agent: 1

0 1 2 3 4 5 6 7 8

time [s]

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

v x
[m

/s
]

vx vs. time

agent: 0

velocity desired agent # 0

agent: 1

velocity desired agent # 1

0 1 2 3 4 5 6 7 8

time [s]

−3

−2

−1

0

1

2

3

v y
[m

/s
]

vy vs. time

agent: 0

agent: 1

(b)Details

Figure A.3.: Solution for Scenario: Double Merge

A.5. Original Simulation Result in the Evaluation of Learning Speed 59

0 50 100 150 200 250

x [m]

0

2

4

6

8

10

y
[m

]

Vehicle Movement x-y-t

agent: 0 desired

agent: 1 desired

agent: 0

agent: 1

0

2

4

6

8

10

12

ti
m

e
[s

]

OT MR TDV
Action Class

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

+ L 0 -
Action Class

−350

−300

−250

−200

−150

−100

−50

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

Evaluation:
/home/czhou/.ros/

(a)2D Trajectory

0 2 4 6 8 10 12

time [s]

0

50

100

150

200

x
[m

]

longitudinal vehicle movement

agent: 0

agent: 1

0 2 4 6 8 10 12

time [s]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

y
[m

]

lateral vehicle movement

agent: 0

agent: 1

0 2 4 6 8 10 12

time [s]

16

18

20

22

24

v x
[m

/s
]

vx vs. time

agent: 0

velocity desired agent # 0

agent: 1

velocity desired agent # 1

0 2 4 6 8 10 12

time [s]

−3

−2

−1

0

1

2

3

v y
[m

/s
]

vy vs. time

agent: 0

agent: 1

(b)Details

Figure A.4.: Solution for Scenario: Overtaking between 2 Vehicles

60 A. Appendix

0 100 200 300 400

x [m]

0

2

4

6

8

10

y
[m

]

Vehicle Movement x-y-t

agent: 0 desired

agent: 1 desired

agent: 2 desired

agent: 0

agent: 1

agent: 2

0

2

4

6

8

10

12

14

16

18

ti
m

e
[s

]

OT MR TDV
Action Class

−2000

−1750

−1500

−1250

−1000

−750

−500

−250

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

- + 0 L
Action Class

−1200

−1000

−800

−600

−400

−200

0

Q
-V

al
u

es

Agent #: 0 , stage: 0

Evaluation:
/home/zhoucy/.ros/

(a)2D Trajectory

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

time [s]

0

100

200

300

400

x
[m

]

longitudinal vehicle movement

agent: 0

agent: 1

agent: 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

time [s]

2

3

4

5

6

7

8

9

y
[m

]

lateral vehicle movement

agent: 0

agent: 1

agent: 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

time [s]

16

18

20

22

24

26

28

30

v x
[m

/s
]

vx vs. time

agent: 0

velocity desired agent # 0

agent: 1

velocity desired agent # 1

agent: 2

velocity desired agent # 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

time [s]

−3

−2

−1

0

1

2

3

v y
[m

/s
]

vy vs. time

agent: 0

agent: 1

agent: 2

(b)Details

Figure A.5.: Solution for Scenario: Overtaking between 3 Vehicles

101 102 103

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e/
[s

]

Classical MCTS
Scene: FreeDrive

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e/
[s

]

DecH-MCTS
Scene: FreeDrive

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure A.6.: Comparison of Average Computation Time per Step in Scenario Free Drive

A.5. Original Simulation Result in the Evaluation of Learning Speed 61

101 102 103

Iterations

0

1

2

3

4

5

T
im

e/
[s

]
Classical MCTS

Scene: MergeInLight

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0

1

2

3

4

5

T
im

e/
[s

]

DecH-MCTS
Scene: MergeInLight

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure A.7.: Comparison of Average Computation Time per Step in scenario Merge

101 102 103

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e/
[s

]

Classical MCTS
Scene: DoubleMerge

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e/
[s

]

DecH-MCTS
Scene: DoubleMerge

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure A.8.: Comparison of Average Computation Time per Step in Scenario Double
Merge

101 102 103

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e/
[s

]

Classical MCTS
Scene: overtake2Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e/
[s

]

DecH-MCTS
Scene: overtake2Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure A.9.: Comparison of Average Computation Time per Step in Scenario Overtaking
between 2 Vehicles

62 A. Appendix

101 102 103

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e/
[s

]

Classical MCTS
Scene: overtake3Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e/
[s

]

DecH-MCTS
Scene: overtake3Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure A.10.: Comparison of Average Computation Time per Step in Scenario Overtaking
between 3 Vehicles

101 102 103

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e/
[s

]

Classical MCTS
Scene: BottleNeck

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e/
[s

]

DecH-MCTS
Scene: BottleNeck

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

Figure A.11.: Comparison of Average Computation Time per Step in Scenario Bottleneck

A.5. Original Simulation Result in the Evaluation of Learning Speed 63

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
C

ol
lis

io
n

R
at

e

Classical MCTS
Scene: FreeDrive

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
R

at
e

DecH-MCTS
Scene: FreeDrive

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(a)Comparison of Collision Rates

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Classical MCTS
Scene: FreeDrive

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

DecH-MCTS
Scene: FreeDrive

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(b)Comparison of Success Rates

Figure A.12.: Performance comparison in Scenario Free Drive

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
R

at
e

Classical MCTS
Scene: MergeInLight

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
R

at
e

DecH-MCTS
Scene: MergeInLight

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(a)Comparison of Collision Rates

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Classical MCTS
Scene: MergeInLight

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

DecH-MCTS
Scene: MergeInLight

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(b)Comparison of Success Rates

Figure A.13.: Performance comparison in Scenario Merge

64 A. Appendix

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
C

ol
lis

io
n

R
at

e

Classical MCTS
Scene: DoubleMerge

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
R

at
e

DecH-MCTS
Scene: DoubleMerge

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(a)Comparison of Collision Rates

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Classical MCTS
Scene: DoubleMerge

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

DecH-MCTS
Scene: DoubleMerge

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(b)Comparison of Success Rates

Figure A.14.: Performance comparison in Scenario Double Merge

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Classical MCTS
Scene: overtake2Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

DecH-MCTS
Scene: overtake2Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(a)Comparison of Success Rates

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Classical MCTS
Scene: overtake2Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

DecH-MCTS
Scene: overtake2Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(b)Comparison of Success Rates

Figure A.15.: Performance Comparison in Scenario Overtaking between 2 Vehicles

A.5. Original Simulation Result in the Evaluation of Learning Speed 65

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
C

ol
lis

io
n

R
at

e

Classical MCTS
Scene: overtake3Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
R

at
e

DecH-MCTS
Scene: overtake3Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(a)Comparison of Collision Rates

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Classical MCTS
Scene: overtake3Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

DecH-MCTS
Scene: overtake3Veh

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(b)Comparison of Success Rates

Figure A.16.: Performance Comparison in Scenario Overtaking between 3 Vehicles

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
R

at
e

Classical MCTS
Scene: BottleNeck

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
R

at
e

DecH-MCTS
Scene: BottleNeck

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(a)Comparison of Collision Rates

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Classical MCTS
Scene: BottleNeck

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

DecH-MCTS
Scene: BottleNeck

max. depth = 5

max. depth = 10

max. depth = 15

max. depth = 20

max. depth = 30

(b)Comparison of Success Rates

Figure A.17.: Performance Comparison in Scenario Bottleneck

List of Figures

2.1. Three termination schemes . 5

2.2. Learning and Planning . 6

2.3. Hierarchical Task Graph in the Taxi Domain 8

2.4. Monte Carlo Tree Search in the example of an overtaking maneuver 10

2.5. Matrix Game with 2 agents owning 2 primitive actions each 11

2.6. Definition of Cooperative Behaviors . 12

4.1. Trajectories of the five primitive actions . 17

4.2. Update rule with example of a subtree starting from node 1 21

4.3. Hierarchical Action Graph . 22

4.4. Hierarchically Bounded Return in the example of single agent 24

5.1. Hierarchically Bounded Return in an iteration of depth 7 32

6.1. Scenario: Free Drive with one vehicle . 36

6.2. Scenario: Merge; the green vehicle blocks one lane 36

6.3. Scenario: Double Merge; the green vehicles block two lanes 36

6.4. Scenario: Overtaking between 2 vehicles . 37

6.5. Scenario: Overtaking between 3 vehicles . 37

6.6. Scenario: Bottleneck; the green vehicle blocks one lane 37

6.7. Scenario: Open Loop with heterogeneous environment 38

6.8. Solution for scenario: Bottleneck . 39

6.9. 2D trajectories of each agent . 42

6.10. Comparison of utility in scenario Free Drive 43

6.11. Comparison of utility in scenario Merge . 43

6.12. Comparison of utility in scenario Double Merge 43

6.13. Comparison of utility in scenario Overtaking between 2/3 Vehicles 44

6.14. Comparison of utility in scenario Bottleneck 44

6.15. Screenshot of SUMO-GUI . 46

6.16. Information Exchange between the planning algorithm and SUMO with the
help of ROS-nodes . 46

6.17. Analysis of robustness of DecH-MCTS in the scenario uncooperative bot-
tleneck . 48

6.18. Screenshots from the Open Loop Test . 49

A.1. Solution for Scenario: Free Drive . 56

A.2. Solution for Scenario: Merge . 57

A.3. Solution for Scenario: Double Merge . 58

A.4. Solution for Scenario: Overtaking between 2 Vehicles 59

A.5. Solution for Scenario: Overtaking between 3 Vehicles 60

A.6. Comparison of Average Computation Time per Step in Scenario Free Drive 60

A.7. Comparison of Average Computation Time per Step in scenario Merge . . . 61

68 List of Figures

A.8. Comparison of Average Computation Time per Step in Scenario Double
Merge . 61

A.9. Comparison of Average Computation Time per Step in Scenario Overtaking
between 2 Vehicles . 61

A.10.Comparison of Average Computation Time per Step in Scenario Overtaking
between 3 Vehicles . 62

A.11.Comparison of Average Computation Time per Step in Scenario Bottleneck 62
A.12.Performance comparison in Scenario Free Drive 63
A.13.Performance comparison in Scenario Merge 63
A.14.Performance comparison in Scenario Double Merge 64
A.15.Performance Comparison in Scenario Overtaking between 2 Vehicles 64
A.16.Performance Comparison in Scenario Overtaking between 3 Vehicles 65
A.17.Performance Comparison in Scenario Bottleneck 65

List of Tables

3.1. Nomenclature . 16

4.1. Initial and terminal conditions for macro-actions 22

6.1. Initial Condition for Scenario Overtaking between 3 vehicles 38
6.2. Planned action sequence at t = 0 . 40
6.3. State after the first step (actions L, L, 0 are respectively executed) 40
6.4. Planned action sequence at t = 2 s . 41
6.5. Independent variables and their values in the analysis of learning speed . . 42

A.1. Values of the basic parameters . 53
A.2. Free Drive . 54
A.3. Overtaking between 2 vehicles . 54
A.4. Overtaking between 3 vehicles . 54
A.5. Merge . 54
A.6. Double Merge . 54
A.7. Bottleneck . 55

Bibliography

[ACBF02] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the mul-
tiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp. 235–256,
2002.

[ACBFS95] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in a
rigged casino: The adversarial multi-armed bandit problem,” in Foundations
of Computer Science, 1995. Proceedings., 36th Annual Symposium on. IEEE,
1995, pp. 322–331.

[AKK14] C. Amato, G. D. Konidaris, and L. P. Kaelbling, “Planning with Macro-
Actions in Decentralized POMDPs,” Proceedings of the 13th Inter- national
Conference on Autonomous Agents and Multiagent Systems, pp. 1273–1280,
2014.

[AKM17] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable bench-
marks for motion planning on roads,” in Intelligent Vehicles Symposium (IV),
2017 IEEE. IEEE, 2017, pp. 719–726.

[BD95] S. J. Bradtke and M. O. Duff, “Reinforcement learning methods for
continuous-time markov decision problems,” in Advances in neural informa-
tion processing systems, 1995, pp. 393–400.

[BF09] Y. Bjoernsson and H. Finnsson, “Cadiaplayer: A simulation-based general
game player,” Computational Intelligence and AI in Games, IEEE Transac-
tions on, vol. 1, pp. 4 – 15, 04 2009.

[BM03] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical reinforce-
ment learning,” Discrete Event Dynamic Systems, vol. 13, no. 4, pp. 341–379,
2003.

[BPW+12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of
Monte Carlo tree search methods,” IEEE Transactions on Computational In-
telligence and AI in Games, vol. 4, no. 1, pp. 1–43, mar 2012.

[BSA83] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive ele-
ments that can solve difficult learning control problems,” IEEE transactions
on systems, man, and cybernetics, no. 5, pp. 834–846, 1983.

[BSR16] A. Bai, S. Srivastava, and S. Russell, “Markovian state and action
abstractions for MDPs via hierarchical MCTS,” in IJCAI International Joint
Conference on Artificial Intelligence, vol. 2016-Janua, 2016, pp. 3029–3037.
[Online]. Available: https://www.ijcai.org/Proceedings/16/Papers/430.pdf

[CPW12] Cowling, Peter I., E. J. Powley, and D. Whitehouse, “Information set
monte carlo tree search,” IEEE TRANSACTIONS ON COMPUTATIONAL
INTELLIGENCE AND AI IN GAMES, vol. 4, no. 2, pp. 120–143, 2012.

https://www.ijcai.org/Proceedings/16/Papers/430.pdf

72 Bibliography

[Online]. Available: http://ieeexplore.ieee.org/xpls/abs{ }all.jsp?arnumber=
6203567

[Die00] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq value
function decomposition,” J. Artif. Intell. Res.(JAIR), vol. 13, pp. 227–303,
2000.

[DP14] M. During and P. Pascheka, “Cooperative decentralized decision making for
conflict resolution among autonomous agents,” in Innovations in Intelligent
Systems and Applications (INISTA) Proceedings, 2014 IEEE International
Symposium on. IEEE, 2014, pp. 154–161.

[DTW11] N. G. Den Teuling and M. H. Winands, “Monte-carlo tree search for the
simultaneous move game tron,” Univ. Maastricht, Netherlands, Tech. Rep,
2011.

[DU07] P. Drake and S. Uurtamo, “Move ordering vs heavy playouts: Where should
heuristics be applied in monte carlo go,” 01 2007.

[dWRB16] M. de Waard, D. M. Roijers, and S. C. Bakkes, “Monte carlo tree search with
options for general video game playing,” in IEEE Conference on Computa-
tional Intelligence and Games (CIG). IEEE, 2016, pp. 1–8.

[GMM+06] M. Ghavamzadeh, S. Mahadevan, R. Makar, M. Ghavamzadeh, S. Mahadevan,
and R. Makar, “Hierarchical multi-agent reinforcement learning,” Auton
Agent Multi-Agent Sys, vol. 13, pp. 197–229, 2006. [Online]. Available:
https://link.springer.com/content/pdf/10.1007{%}2Fs10458-006-7035-4.pdf

[GS07] S. Gelly and D. Silver, “Combining online and offline knowledge in uct,” in
Proceedings of the 24th international conference on Machine learning. ACM,
2007, pp. 273–280.

[KBSZ14] R. Kohlhaas, T. Bittner, T. Schamm, and J. M. Zöllner, “Semantic state space
for high-level maneuver planning in structured traffic scenes,” in Intelligent
Transportation Systems (ITSC), 2014 IEEE 17th International Conference
on. IEEE, 2014, pp. 1060–1065.

[KEBB12] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
Development and Applications of {SUMO - Simulation of Urban MObility},”
International Journal On Advances in Systems and Measurements, vol. 5,
no. 3, pp. 128–138, 2012. [Online]. Available: http://www.iariajournals.org/
systems{ }and{ }measurements/http://elib.dlr.de/80483/

[KLM96] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[KMN99] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large Markov decision processes,” in IJCAI
International Joint Conference on Artificial Intelligence, vol. 2, 1999,
pp. 1324–1331. [Online]. Available: https://www.cis.upenn.edu/{˜}mkearns/
papers/sparsesampling-journal.pdf

[KSW06] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved monte-carlo search,”
Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[LKK16] D. Lenz, T. Kessler, and A. Knoll, “Tactical cooperative planning for
autonomous highway driving using Monte-Carlo Tree Search,” in IEEE
Intelligent Vehicles Symposium, Proceedings, vol. 2016-Augus. IEEE, jun
2016, pp. 447–453. [Online]. Available: http://ieeexplore.ieee.org/document/
7535424/

http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6203567
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6203567
https://link.springer.com/content/pdf/10.1007{%}2Fs10458-006-7035-4.pdf
http://www.iariajournals.org/systems{_}and{_}measurements/ http://elib.dlr.de/80483/
http://www.iariajournals.org/systems{_}and{_}measurements/ http://elib.dlr.de/80483/
https://www.cis.upenn.edu/{~}mkearns/papers/sparsesampling-journal.pdf
https://www.cis.upenn.edu/{~}mkearns/papers/sparsesampling-journal.pdf
http://ieeexplore.ieee.org/document/7535424/
http://ieeexplore.ieee.org/document/7535424/

Bibliography 73

[LR00] M. Lauer and M. Riedmiller, “An Algorithm for Distributed Reinforcement
Learning in Cooperative Multi-Agent Systems,” in 17-th International
Conference on Machine Learning, 2000, pp. 535–542. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.772

[LSO+17] M. Liu, K. Sivakumar, S. Omidshafiei, C. Amato, and J. P. How,
“Learning for Multi-robot Cooperation in Partially Observable Stochastic
Environments with Macro-actions,” 2017. [Online]. Available: http:
//arxiv.org/abs/1707.07399

[Mat94] M. J. Mataric, “Learning to behave socially,” in Third international conference
on simulation of adaptive behavior, vol. 617, 1994, pp. 453–462.

[MKS+13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[MLA17] S. Manzinger, M. Leibold, and M. Althoff, “Driving strategy selection for
cooperative vehicles using maneuver templates,” in Intelligent Vehicles Sym-
posium (IV), 2017 IEEE. IEEE, 2017, pp. 647–654.

[NHR99] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward trans-
formations: Theory and application to reward shaping,” in ICML, vol. 99,
1999, pp. 278–287.

[NOB+17] M. Naumann, P. Orzechowski, C. Burger, O. Tas, and C. Stiller, “Heraus-
forderungen für die verhaltensplanung kooperativer automatischer fahrzeuge,”
AAET Automatisiertes und vernetztes Fahren. Braunschweig, Germany: ITS
automotive nord eV, pp. 287–307, 2017.

[NS17] M. Naumann and C. Stiller, “Towards cooperative motion planning for auto-
mated vehicles in mixed traffic,” arXiv preprint arXiv:1708.06962, 2017.

[Omi15] Omidshafiei, Shayegan and Agha-Mohammadi, Ali-Akbar and Amato,
Christopher and How, Jonathan P, “Decentralized control of partially observ-
able markov decision processes using belief space macro-actions,” in Robotics
and Automation (ICRA), 2015 IEEE International Conference on. IEEE,
2015, pp. 5962–5969.

[PPW+14] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis, P. I.
Cowling, and S. M. Lucas, “Solving the physical traveling salesman problem:
Tree search and macro actions,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 1, pp. 31–45, mar 2014. [Online].
Available: http://ieeexplore.ieee.org/document/6517274/

[PR98] R. Parr and S. J. Russell, “Reinforcement learning with hierarchies of ma-
chines,” in Advances in neural information processing systems, 1998, pp. 1043–
1049.

[Pre00] D. Precup, Temporal abstraction in reinforcement learning. University of
Massachusetts Amherst, 2000.

[PRHK17] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining
Neural Networks and Tree Search for Task and Motion Planning
in Challenging Environments,” mar 2017. [Online]. Available: http:
//arxiv.org/abs/1703.07887

[PWC12] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Monte Carlo Tree Search
with macro-actions and heuristic route planning for the Physical Travelling

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.772
http://arxiv.org/abs/1707.07399
http://arxiv.org/abs/1707.07399
http://ieeexplore.ieee.org/document/6517274/
http://arxiv.org/abs/1703.07887
http://arxiv.org/abs/1703.07887

74 Bibliography

Salesman Problem,” in 2012 IEEE Conference on Computational Intelligence
and Games, CIG 2012. IEEE, sep 2012, pp. 234–241. [Online]. Available:
http://ieeexplore.ieee.org/document/6374161/

[RM03] K. Rohanimanesh and S. Mahadevan, “Learning to take concurrent actions,”
in Advances in neural information processing systems, 2003, pp. 1651–1658.

[SB16] R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction. MIT
Press, 2016.

[SFK07] C. Stiller, G. Farber, and S. Kammel, “Cooperative cognitive automobiles,”
in Intelligent Vehicles Symposium, 2007 IEEE. IEEE, 2007, pp. 215–220.

[SH96] D. Swaroop and J. K. Hedrick, “String stability of interconnected systems,”
IEEE transactions on automatic control, vol. 41, no. 3, pp. 349–357, 1996.

[SHM+16a] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, jan 2016. [Online]. Available:
http://www.nature.com/doifinder/10.1038/nature16961

[SHM+16b] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-
tering the game of go with deep neural networks and tree search,” nature, vol.
529, no. 7587, pp. 484–489, 2016.

[SPS99] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial in-
telligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[SSS09] M. Shaei, N. Sturtevant, and J. Schaeffer, “Comparing UCT versus CFR in
simultaneous games,” in IJCAI Workshop on General Game Playing, 2009,
pp. 75–82.

[SSS+17a] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go
without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, oct 2017.
[Online]. Available: http://www.nature.com/doifinder/10.1038/nature24270

[SSS+17b] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go
without human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[SSSS16] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, Multi-Agent,
Reinforcement Learning for Autonomous Driving,” October 2016. [Online].
Available: http://arxiv.org/abs/1610.03295

[Sut91] R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and
reacting,” ACM SIGART Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[TT15] M. Toussaint and M. Toussaint, “Hierarchical Monte-Carlo Planning,” in
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
ser. AAAI’15, no. January. AAAI Press, 2015, pp. 3613–3619. [Online].
Available: http://dl.acm.org/citation.cfm?id=2888116.2888218

http://ieeexplore.ieee.org/document/6374161/
http://www.nature.com/doifinder/10.1038/nature16961
http://www.nature.com/doifinder/10.1038/nature24270
http://arxiv.org/abs/1610.03295
http://dl.acm.org/citation.cfm?id=2888116.2888218

Bibliography 75

[UGA+15] S. Ulbrich, S. Grossjohann, C. Appelt, K. Homeier, J. Rieken, and M. Maurer,
“Structuring cooperative behavior planning implementations for automated
driving,” in Intelligent Transportation Systems (ITSC), 2015 IEEE 18th In-
ternational Conference on. IEEE, 2015, pp. 2159–2165.

[Wat89] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
King’s College, Cambridge, 1989.

[WD92] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[Win09] A. F. Winfield, “Foraging robots,” in Encyclopedia of complexity and systems
science. Springer, 2009, pp. 3682–3700.

[WKZG12] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal trajectories for
time-critical street scenarios using discretized terminal manifolds,” The Inter-
national Journal of Robotics Research, vol. 31, no. 3, pp. 346–359, 2012.

[WT02] D. H. Wolpert and K. Tumer, “Optimal payoff functions for members of col-
lectives,” in Modeling complexity in economic and social systems. World
Scientific, 2002, pp. 355–369.

[ZJBP08] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret minimiza-
tion in games with incomplete information,” in Advances in neural information
processing systems, 2008, pp. 1729–1736.

[ZS10] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle motion
planning,” in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE, 2010,
pp. 518–522.

	Abstract
	Contents
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Goal Description and Limitations
	1.3 Outline
	1.4 Presupposed Knowledge

	2 Fundamentals and Related Work
	2.1 Markov Decision Process
	2.1.1 Classical MDP
	2.1.2 Semi-MDP
	2.1.3 Multi-Agent (Semi-)MDP

	2.2 Reinforcement Learning and Planning
	2.2.1 Simulation-based Search
	2.2.2 Hierarchical Reinforcement Learning
	2.2.3 Monte Carlo Tree Search
	2.2.4 Monte Carlo Tree Search in Simultaneous Move Games

	2.3 Related Work
	2.3.1 Cooperative Automated Driving
	2.3.2 Monte Carlo Tree Search with Macro-Actions
	2.3.3 Macro-Actions in Multi-Agent Systems

	3 Underlying Conditions and Preliminaries
	3.1 Underlying Conditions
	3.2 Preliminaries
	3.2.1 Nomenclature

	4 Concepts
	4.1 Planning with Primitive Motions
	4.1.1 Action Space
	4.1.2 Reward Function
	4.1.3 Monte Carlo Learning
	4.1.4 Decentralization

	4.2 Planning with Macro-Actions
	4.2.1 Design of Macro-Actions
	4.2.2 Termination Scheme
	4.2.3 Reward Function
	4.2.4 Learning with Hierarchically Bounded Return

	5 Implementation
	5.1 Overview
	5.2 Tree Policy
	5.2.1 Selection
	5.2.2 Expansion

	5.3 Simulation Policy
	5.4 Backpropagation
	5.4.1 Reward Collection
	5.4.2 Computation of Hierarchically Bounded Return

	5.5 Final Selection and Execution

	6 Evaluation
	6.1 Test Scenarios
	6.1.1 Free Drive
	6.1.2 Merge
	6.1.3 Double Merge
	6.1.4 Overtaking
	6.1.5 Bottleneck
	6.1.6 Open Loop

	6.2 General Applicability
	6.3 Performance Analysis
	6.3.1 Flexible Learning of Macro-Actions
	6.3.2 Faster Learning than Classical mcts
	6.3.3 Robustness

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	A Appendix
	A.1 Parameter Settings
	A.2 Scenario Descriptions
	A.3 Solutions found by DecH-MCTS
	A.4 Computation Time
	A.5 Original Simulation Result in the Evaluation of Learning Speed

	List of Figures
	List of Tables
	Bibliography

